如圖所示的程序框圖描述的算法稱為歐幾里得輾轉(zhuǎn)相除法,若輸入m=2010,n=1541,則輸出的m的值為(  )
A、2010B、1541
C、134D、67
考點(diǎn):程序框圖
專題:算法和程序框圖
分析:程序的運(yùn)行功能是求m=2010,n=1541的最大公約數(shù),根據(jù)輾轉(zhuǎn)相除法可得m的值.
解答: 解:由程序框圖知:程序的運(yùn)行功能是求m=2010,n=1541的最大公約數(shù),
∵2010=1541+469;
1541=3×469+134;
469=3×134+67;
134=2×67+0;
∴此時(shí)m=67.∴輸出m的值為67.
故選:D.
點(diǎn)評(píng):本題考查了輾轉(zhuǎn)相除法的程序框圖,掌握輾轉(zhuǎn)相除法的操作流程是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題:
①?x0∈R,2x03x0
②若函數(shù)f(x)=(x-a)(x+2)為偶函數(shù),則實(shí)數(shù)a的值為-2;
③圓x2+y2-2x=0上兩點(diǎn)P,Q關(guān)于直線kx-y+2=0對(duì)稱,則k=2;
④從1,2,3,4,5,6六個(gè)數(shù)中任取2個(gè)數(shù),則取出的兩個(gè)數(shù)是連續(xù)自然數(shù)的概率是
1
3

其中真命題是
 
(填上所有真命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將兩枚各面分別刻有數(shù)字1,2,2,3,3,3的骰子擲一次,則擲得的點(diǎn)數(shù)之和為5的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

復(fù)數(shù)z=
2
i2014
1-
2
i
(i是虛數(shù)單位)在復(fù)平面內(nèi)的對(duì)應(yīng)點(diǎn)位于(  )
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義:如果函數(shù)y=f(x)在區(qū)間[a,b]上存在x1,x2(a<x1<x2<b),滿足f′(x1)=
f(b)-f(a)
b-a
,f′(x2)=
f(b)-f(a)
b-a
,則稱函數(shù)y=f(x)在區(qū)間[a,b]上的一個(gè)雙中值函數(shù),已知函數(shù)f(x)=
1
3
x3-x2+a是區(qū)間[0,a]上的雙中值函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A、(0,
3
2
B、(
3
2
,3)
C、(
1
2
,3)
D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x2-mx+5,當(dāng)x∈[-1,+∞)時(shí)是增函數(shù),當(dāng)x∈(-∞,-1]時(shí)是減函數(shù),則f(-2)等于( 。
A、5B、7
C、9D、由m的值而定的常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列函數(shù)中,既是偶函數(shù),又在區(qū)間(1,2)內(nèi)是增函數(shù)的為(  )
A、y=log2|x|
B、y=cos2x
C、y=
2x-2-x
2
D、y=log2
2-x
2+x

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

閱讀如圖所示程序框圖,運(yùn)行相應(yīng)的程序,輸出s的值等于( 。
A、-3B、-10C、0D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率與等軸雙曲線的離心率互為倒數(shù),直線l:x-y+
2
=0與以原點(diǎn)為圓心,以橢圓C的短半軸長(zhǎng)為半徑的圓相切.
(1)求橢圓C的方程;
(2)設(shè)M是橢圓的上頂點(diǎn),過(guò)點(diǎn)M分別作直線MA,MB交橢圓于A,B兩點(diǎn),設(shè)兩直線的斜率分別為k1,k2,且k1+k2=2,證明:直線AB過(guò)定點(diǎn)(-1,-1).

查看答案和解析>>

同步練習(xí)冊(cè)答案