從1,2,3,個(gè)數(shù)中任取兩個(gè)數(shù),設(shè)這兩個(gè)數(shù)之積的數(shù)學(xué)期望為,則________.

試題分析:因?yàn)檫@個(gè)數(shù)中任取兩個(gè)數(shù)共有種情況. 兩個(gè)數(shù)之積的乘積,可轉(zhuǎn)化為假設(shè)其中任一個(gè)數(shù),則含兩個(gè)數(shù)的乘積和為.因?yàn)?img src="http://thumb.1010pic.com/pic2/upload/papers/20140824/201408240439451251175.png" style="vertical-align:middle;" />, .所以兩個(gè)數(shù)的乘積和為=.每種情況的概率都為.所以數(shù)學(xué)期望=.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校為了解高三年級學(xué)生寒假期間的學(xué)習(xí)情況,抽取甲、乙兩班,調(diào)查這兩個(gè)班的學(xué)生在寒假期間每天平均學(xué)習(xí)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)結(jié)果繪成頻率分布直方圖(如圖).已知甲、乙兩班學(xué)生人數(shù)相同,甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的有8人.

(1)求直方圖中的值及甲班學(xué)生每天平均學(xué)習(xí)時(shí)間在區(qū)間的人數(shù);
(2)從甲、乙兩個(gè)班每天平均學(xué)習(xí)時(shí)間大于10個(gè)小時(shí)的學(xué)生中任取4人參加測試,設(shè)4人中甲班學(xué)生的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

生產(chǎn)A,B兩種元件,其質(zhì)量按測試指標(biāo)劃分為:指標(biāo)大于或等于82為正品,小于82為次品,現(xiàn)隨機(jī)抽取這兩種元件各100件進(jìn)行檢測,檢測結(jié)果統(tǒng)計(jì)如下:
測試指標(biāo)





元件A
8
12
40
32]
8
元件B
7
18
40
29
6
(1)試分別估計(jì)元件A、元件B為正品的概率;
(2)生產(chǎn)一件元件A,若是正品可盈利50元,若是次品則虧損10元;生產(chǎn)一件元件B,若是正品可盈利100元,若是次品則虧損20元,在(1)的前提下;
(i)求生產(chǎn)5件元件B所獲得的利潤不少于300元的概率;
(ii)記X為生產(chǎn)1件元件A和1件元件B所得的總利潤,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(14分)如圖所示,機(jī)器人海寶按照以下程序運(yùn)行

1從A出發(fā)到達(dá)點(diǎn)B或C或D,到達(dá)點(diǎn)B、C、D之一就停止;
②每次只向右或向下按路線運(yùn)行;
③在每個(gè)路口向下的概率;
④到達(dá)P時(shí)只向下,到達(dá)Q點(diǎn)只向右.
(1)求海寶過點(diǎn)從A經(jīng)過M到點(diǎn)B的概率,求海寶過點(diǎn)從A經(jīng)過N到點(diǎn)C的概率;
(2)記海寶到點(diǎn)B、C、D的事件分別記為X=1,X=2,X=3,求隨機(jī)變量X的分布列及期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某學(xué)校的三個(gè)學(xué)生社團(tuán)的人數(shù)分布如下表(每名學(xué)生只能參加一個(gè)社團(tuán)):
圍棋社舞蹈社拳擊社
男生51028
女生1530m
學(xué)校要對這三個(gè)社團(tuán)的活動(dòng)效果進(jìn)行抽樣調(diào)查,按分層抽樣的方法從三個(gè)社團(tuán)成員中抽取18人,結(jié)果拳擊社被抽出了6人.
(Ⅰ)求拳擊社團(tuán)被抽出的6人中有5人是男生的概率;
(Ⅱ)設(shè)拳擊社團(tuán)有X名女生被抽出,求X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

甲、乙兩射手在同一條件下進(jìn)行射擊,分布列如下:射手甲擊中環(huán)數(shù)8,9,10的概率分別為0.2,0.6,0.2;射手乙擊中環(huán)數(shù)8,9,10的概率分別為0.4,0.2,0.4.用擊中環(huán)數(shù)的期望與方差比較兩名射手的射擊水平.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

電視臺(tái)綜藝頻道組織的闖關(guān)游戲,游戲規(guī)定前兩關(guān)至少過一關(guān)才有資格闖第三關(guān),闖關(guān)者闖第一關(guān)成功得3分,闖第二關(guān)成功得3分,闖第三關(guān)成功得4分.現(xiàn)有一位參加游戲者單獨(dú)闖第一關(guān)、第二關(guān)、第三關(guān)成功的概率分別為、、,記該參加者闖三關(guān)所得總分為ξ.
(1)求該參加者有資格闖第三關(guān)的概率;
(2)求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某商店試銷某種商品20天,獲得如下數(shù)據(jù):
日銷售量(件)
0
1
2
3
頻數(shù)
1
5
9
5
試銷結(jié)束后(假設(shè)該商品的日銷售量的分布規(guī)律不變).設(shè)某天開始營業(yè)時(shí)由該商品3件,當(dāng)天營業(yè)結(jié)束后檢查存貨,若發(fā)現(xiàn)存量少于2件,則當(dāng)天進(jìn)貨補(bǔ)充至3件,否則不進(jìn)貨,將頻率視為概率.
(1)求當(dāng)天商店不進(jìn)貨的概率;
(2)記X為第二天開始營業(yè)時(shí)該商品視為件數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在高中“自選模塊”考試中,某考場的每位同學(xué)都選了一道數(shù)學(xué)題,第一小組選《數(shù)學(xué)史與不等式選講》的有1人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有5人,第二小組選《數(shù)學(xué)史與不等式選講》的有2人,選《矩陣變換和坐標(biāo)系與參數(shù)方程》的有4人,現(xiàn)從第一、第二兩小組各任選2人分析得分情況.
(1)求選出的4人均為選《矩陣變換和坐標(biāo)系與參數(shù)方程》的概率;
(2)設(shè)X為選出的4個(gè)人中選《數(shù)學(xué)史與不等式選講》的人數(shù),求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案