若△ABC的內(nèi)角A、B、C所對的邊a、b、c滿足(b+c)2-a2=3,且A=60°,則bc的值為( 。
A、3
B、6-3
3
C、1
D、-1
考點:余弦定理
專題:解三角形
分析:由條件利用余弦定理可得可得b2+c2+2bc-(b2+c2-2bc•cos60°)=3,由此求得bc的值.
解答: 解:△ABC中,由(b+c)2-a2=3,且A=60°,利用余弦定理可得b2+c2+2bc-(b2+c2-2bc•cos60°)=3,
求得bc=1,
故選:C.
點評:本題主要考查余弦定理的應用,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

函數(shù)f(x)的定義域為(-∞,1)∪(1,+∞),且f(x+1)為奇函數(shù),則f(x)關于點
 
對稱.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知a3+a2<0,那么a,a2,-a,-a2的大小關系是(  )
A、a2>-a>a>-a2
B、-a>a2>a>-a2
C、a2>-a2>a>-a
D、a2>-a2>-a>a

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

對學生進行某種體育測試,甲通過測試的概率為P1,乙通過測試的概率為P2,則甲、乙至少1人通過測試的概率為(  )
A、P1+P2
B、P1P2
C、1-P1P2
D、1-(1-P1)(1-P2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式6-x-x2<0的解集是( 。
A、{x|-2<x<3}
B、{x|-2<x<
3
2
}
C、{x|x<-3或x>2}
D、{x|x>3或x<-2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:“?x∈R,x2+1≥1”的否定是“?x∈R,x2+1≤1”;命題q:在△ABC中,“A>B”是“sinA>sinB”的充分條件;則下列命題是真命題的是( 。
A、p且qB、p或¬q
C、¬p且¬qD、p或q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知A是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點,F(xiàn)1、F2分別為雙曲線的左、右焦點,P為雙曲線上一點,G是△PF1F2的重心,若
GA
PF1
,則雙曲線的離心率為(  )
A、3B、2
C、4D、與λ的取值有關

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知正三角形OAB中,點O為原點,點B的坐標是(-3,4),點A在第一象限,向量
m
=(-1,0),記向量
m
與向量
OA
的夾角為α,則sinα的值為( 。
A、-
4+3
3
10
B、
4-3
3
10
C、
3
3
-4
10
D、
4+3
3
10

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知sinα+cosα=
2
2
,計算下列各式的值:
(1)sinα-cosα;                
(2)
1
sin2α
+
1
cos2α

查看答案和解析>>

同步練習冊答案