已知A是雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)的左頂點,F(xiàn)1、F2分別為雙曲線的左、右焦點,P為雙曲線上一點,G是△PF1F2的重心,若
GA
PF1
,則雙曲線的離心率為( 。
A、3B、2
C、4D、與λ的取值有關
考點:雙曲線的簡單性質
專題:計算題,圓錐曲線的定義、性質與方程
分析:由題意,PG=2GO,GA∥PF1,可得2OA=AF1,即可求出雙曲線的離心率.
解答: 解:由題意,PG=2GO,GA∥PF1
∴2OA=AF1,
∴2a=c-a,∴c=3a,
∴e=
c
a
=3.
故選:A.
點評:本題考查雙曲線的離心率,考查學生的計算能力,比較基礎.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

將一張坐標紙折疊一次,使點(0,2)與點(4,0)重合,且點(7,3)與點(m,n)重合,則
m
n
的值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若a,b,c滿足c<b<a且ac<0,那么下列選項不一定成立的是(  )
A、ab>ac
B、cb2<ab2
C、bc>ac
D、ac(a-c)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若△ABC的內角A、B、C所對的邊a、b、c滿足(b+c)2-a2=3,且A=60°,則bc的值為( 。
A、3
B、6-3
3
C、1
D、-1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

命題p:α=2kπ+
π
4
(k∈Z)的充分不必要條件是tanα=1,q:y=ln
1-x
1+x
是奇函數(shù),則下列命題是真命題的是( 。
A、p∧q
B、p∨(¬q)
C、(¬p)∧q
D、(¬p)∧(¬q)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

宜昌市科協(xié)將12個參加青少年科技創(chuàng)新大賽的名額分配給3個學校,要求每個學校至少有一個名額且各校分配的名額互不相等,則不同的分配方法種數(shù)為(  )
A、36B、42C、48D、54

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=3sin
x
4
cos
x
4
+
3
sin2
x
4
-
3
2
+m,若對于任意的-
π
3
≤x≤
3
有f(x)≥0恒成立,則實數(shù)m的取值范圍是(  )
A、m≥
3
2
B、m≥-
3
2
C、m≥-
3
2
D、m≥
3
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下表給出了從某校500名12歲男生中用簡單隨機抽樣得出的120人的身高資料(單位:厘米):
分組人數(shù)頻率
[122,126 )50.042
[126,130)80.067
[130,134 )100.083
[134,138)220.183
[138,142)y
[142,146)200.167
[146,150)110.092
[150,154)x0.050
[154,158)50.042
合計1201.00
(1)在這個問題中,總體是什么?并求出x與y的值;
(2)求表中x與y的值,畫出頻率分布直方圖;
(3)試計算身高在147~152cm的總人數(shù)約有多少?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖所示,某村在P處有一堆肥,今要把此堆肥料沿道路PA或PB送到成矩形的一塊田ABCD中去,已知PA=100m,BP=120m,BC=60m,∠APB=60°,能否在田中確定一條界線,使位于界線一側的點沿道路PA送肥較近而另一側的點則沿PB送肥較近?如果能,請說出這條界線是什么曲線,并求出它的方程.

查看答案和解析>>

同步練習冊答案