【題目】已知拋物線Cy22pxp0)與圓無公共點(diǎn),過拋物線C上一點(diǎn)M作圓D的兩條切線,切點(diǎn)分別為E,F,當(dāng)點(diǎn)M在拋物線C上運(yùn)動(dòng)時(shí),直線EF都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域,求這個(gè)區(qū)域的面積的取值范圍.

【答案】0π

【解析】

聯(lián)立圓的方程和拋物線方程,可得的方程,由方程有非負(fù)數(shù)解,可得,由,既在圓上,又在以為直徑的圓上,可得切點(diǎn)弦的方程,考慮關(guān)于的方程有解,可得當(dāng)運(yùn)動(dòng)時(shí),直線都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域是圓,由圓的面積公式可得范圍.

解:拋物線與圓無公共點(diǎn),

可得無非負(fù)數(shù)解,

即有△,解得,

可得,設(shè),總在圓外部,即對(duì)一切實(shí)數(shù)都成立,

,即,即成立,

點(diǎn),在圓上,也在以,,為直徑的圓上.

即在上,

上面兩個(gè)圓的方程相減可得:

即為直線的方程,化為,

關(guān)于的二次方程有實(shí)數(shù)根,

,

即直線不經(jīng)過圓的內(nèi)部的每一個(gè)點(diǎn).

當(dāng)運(yùn)動(dòng)時(shí),直線都不通過的點(diǎn)構(gòu)成一個(gè)區(qū)域是圓,

這個(gè)區(qū)域的面積是,

取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知?jiǎng)訄AC過定點(diǎn)F2,0),且與直線x=-2相切,圓心C的軌跡為E,

1)求圓心C的軌跡E的方程;

2)若直線lEP,Q兩點(diǎn),且線段PQ的中心點(diǎn)坐標(biāo)(11),求|PQ|

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形的邊長(zhǎng)為2,分別為的中點(diǎn),交于點(diǎn),將沿折起到的位置,使平面平面

(Ⅰ)求證:平面平面;

(Ⅱ)求二面角的余弦值;

(Ⅲ)判斷線段上是否存在點(diǎn),使平面?若存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過拋物線y22pxp0)的焦點(diǎn)F的直線與拋物線交于AB兩點(diǎn),且3,拋物線的準(zhǔn)線lx軸交與點(diǎn)C,AA1垂直l于點(diǎn)A1,若四邊形AA1CF的面積為,則準(zhǔn)線l的方程為(

A.B.C.x=﹣2D.x=﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,其中

討論函數(shù)的圖象的交點(diǎn)個(gè)數(shù);

若函數(shù)的圖象無交點(diǎn),設(shè)直線與的數(shù)的圖象分別交于點(diǎn)P證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知直線,且與坐標(biāo)軸形成的三角形面積為.求:

1)求證:不論為何實(shí)數(shù),直線過定點(diǎn)P;

2)分別求時(shí),所對(duì)應(yīng)的直線條數(shù);

3)針對(duì)的不同取值,討論集合直線經(jīng)過P,且與坐標(biāo)軸圍成的三角形面積為中的元素個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的短軸長(zhǎng)為,離心率為。

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)設(shè)橢圓的左,右焦點(diǎn)分別為左,右頂點(diǎn)分別為,,點(diǎn),,為橢圓上位于軸上方的兩點(diǎn),且,記直線,的斜率分別為,若,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司推出一新款手機(jī),因其功能強(qiáng)大,外觀新潮,一上市便受到消費(fèi)者爭(zhēng)相搶購,銷量呈上升趨勢(shì).散點(diǎn)圖是該款手機(jī)上市后前6周的銷售數(shù)據(jù).

(1)根據(jù)散點(diǎn)圖,用最小二乘法求關(guān)于的線性回歸方程,并預(yù)測(cè)該款手機(jī)第8周的銷量;

(2)為了分析市場(chǎng)趨勢(shì),該公司市場(chǎng)部從前6周的銷售數(shù)據(jù)中隨機(jī)抽取2周的數(shù)據(jù),記抽取的銷量在18萬臺(tái)以上的周數(shù)為,求的分布列和數(shù)學(xué)期望.參考公式:回歸直線方程,其中:,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線)與雙曲線,)有相同的焦點(diǎn),點(diǎn)是兩條曲線的一個(gè)交點(diǎn),且軸,則該雙曲線經(jīng)過一、三象限的漸近線的傾斜角所在的區(qū)間是( )

A. B. C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案