13.復(fù)數(shù)z=$\frac{2+i}{1-2i}$的虛部為( 。
A.-$\frac{5}{3}$B.-$\frac{5}{3}$iC.1D.i

分析 利用復(fù)數(shù)的除法的運(yùn)算法則化簡求解得到a+bi即可.

解答 解:復(fù)數(shù)z=$\frac{2+i}{1-2i}$=$\frac{(2+i)(1+2i)}{(1-2i)(1+2i)}$=$\frac{2+5i-2}{5}$=i.
復(fù)數(shù)的虛部為:1.
故選:C.

點(diǎn)評 本題考查復(fù)數(shù)的代數(shù)形式混合運(yùn)算,復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)關(guān)于x,y的不等式組$\left\{\begin{array}{l}{2x-y+1≥0}\\{x-m≤0}\\{y+m≥0}{\;}\end{array}\right.$表示的平面區(qū)域內(nèi)存在點(diǎn)P(x0,y0)滿足$\frac{|3{x}_{0}-4{y}_{0}-12|}{5}$=1,則實數(shù)m的取值范圍是( 。
A.[1,+∞)B.$[\frac{17}{7},+∞)$C.$[1,\frac{17}{7}]$D.$(-∞,\frac{17}{7}]$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等差數(shù)列{an}中,a5+a6=10,則其前10項和S10的值是(  )
A.10B.50C.60D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知雙曲線C的左右焦點(diǎn)為F1,F(xiàn)2,P雙曲線右支上任意一點(diǎn),若以F1為圓心,以$\frac{1}{2}$|F1F2|為半徑的圓與以P為圓心,|PF2|為半徑的圓相切,則C的離心率為( 。
A.$\sqrt{2}$B.2C.4D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知向量$\overrightarrow{a}$=(sinα,$\frac{3}{4}$),$\overrightarrow$=(cosα,$\frac{\sqrt{3}}{4}$),α∈(0,π),且$\overrightarrow{a}$∥$\overrightarrow$,則α=( 。
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知向量$\overrightarrow a$=(1,x),$\overrightarrow b$=(x-3,2),且$\overrightarrow a$⊥$\overrightarrow b$.
(Ⅰ)求x的值;
(Ⅱ)試確定實數(shù)k的值,使k$\overrightarrow{a}$+$\overrightarrow$與$\overrightarrow{a}$-2$\overrightarrow$平行.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)f(x)是定義在R上的奇函數(shù),若f(x)=$\left\{\begin{array}{l}{lo{g}_{2}(x+1),x∈[0,1)}\\{\frac{1}{2}{x}^{2}-3x+\frac{7}{2},x∈[1,+∞)}\end{array}\right.$,則關(guān)于x的方程f(x)+a=0(0<a<1)的所有根之和為( 。
A.1-($\frac{1}{2}$)aB.($\frac{1}{2}$)a-1C.1-2aD.2a-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.如圖是一個算法的程序框圖,該算法所輸出的結(jié)果是( 。
A.$\frac{2}{3}$B.$\frac{3}{4}$C.$\frac{4}{5}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.點(diǎn)P(sin2θ,sinθ)位于第三象限,那么θ是第(  )象限角.
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案