【題目】到直線3x-4y+1=0的距離為3,且與此直線平行的直線方程是 ( )
A.3x-4y+4=0
B.3x-4y+4=0或3x-4y-2=0
C.3x-4y+16=0
D.3x-4y+16=0或3x-4y-14=0
科目:高中數(shù)學 來源: 題型:
【題目】某市為響應國家節(jié)能減排建設的號召,喚起人們從自己身邊的小事做起,開展了以“再小的力量也是一種支持”為主題的宣傳教育活動,其中有兩則公益廣告: ①80部手機,一年就會增加一噸二氧化氮的排放.
②人們在享受汽車帶了的便捷舒適的同時,卻不得不呼吸汽車排放的尾氣.
活動組織者為了解是市民對這兩則廣告的宣傳效果,隨機對10﹣60歲的人群抽查了n人,并就兩個問題對選取的市民進行提問,其抽樣人數(shù)頻率分布直方圖如圖所示,宣傳效果調查結果如表所示.
宣傳效果調查表
廣告一 | 廣告二 | |||
回答正 | 占本組 | 回答正 | 占本組 | |
[10,20) | 90 | 0.5 | 45 | a |
[20,30) | 225 | 0.75 | k | 0.8 |
[30,40) | b | 0.9 | 252 | 0.6 |
[40,50) | 160 | c | 120 | d |
[50,60] | 10 | e | f | g |
(1)分別寫出n,a,b,c,d的值.
(2)若將表中的頻率近似看作各年齡組正確回答廣告內(nèi)容的概率,規(guī)定正確回答廣告一的內(nèi)容得30元,廣告二的內(nèi)容得60元.組織者隨機請一家庭的兩成員(大人45歲,孩子17歲),指定大人回答廣告一的內(nèi)容,孩子回答廣告二的內(nèi)容,求該家庭獲得獎金數(shù)ξ的分布列及期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在三棱柱ABC﹣A1B1C1中,面積為 的△ACB是等腰直角三角形且∠ACB=90°,C1B⊥面ABC,C1B=3.
(1)若AB的中點為S,證明:CS⊥C1A.
(2)設 ,是否存在實數(shù)λ,使得直線TB與平面ACC1A1的夾角為 ?若存在,求出λ的值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD的底面是直角梯形,AB∥CD,AB⊥AD,△PAB和△PAD是兩個邊長為2的正三角形,DC=4,O為BD的中點,E為PA的中點. (Ⅰ)求證:PO⊥平面ABCD;
(Ⅱ)求證:OE∥平面PDC;
(Ⅲ)求面PAD與面PBC所成角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點P(2,-1).
(1)求過P點且與原點距離為2的直線l的方程;
(2)求過P點且與原點距離最大的直線l的方程,最大距離是多少?
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=|2x﹣3|+ax﹣6(a是常數(shù),a∈R). (Ⅰ)當a=1時,求不等式f(x)≥0的解集;
(Ⅱ)當x∈[﹣1,1]時,不等式f(x)<0恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x2+bx,則“b<0”是“f(f(x))的最小值與f(x)的最小值相等”的( )
A.充分不必要條件
B.必要不充分條件
C.充分必要條件
D.既不充分也不必要條件
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某單位200名職工的年齡分布情況如圖,現(xiàn)要從中抽取40名職工作樣本,用系統(tǒng)抽樣法,將全體職工隨機按1~200編號,并按編號順序平均分為40組抽出的號碼為28,則第8組抽出的號碼應是a;若用分層抽樣方法,則50歲以下年齡段應抽取b人,那么a+b等于( )
A.46
B.45
C.70
D.69
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com