A. | (-2,-1) | B. | [-2,-1] | C. | [-2,0] | D. | [-3,-1] |
分析 由于f′(x)=3x2+2ax+b,依題意知,f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,于是有b=-3-2a,代入f(1)=10即可求得a,b,先求出函數(shù)的單調區(qū)間,結合函數(shù)f(x)在區(qū)間[t,t+1]上單調遞增,得到不等式組,解出即可.
解答 解:∵f(x)=x3+ax2+bx-a2-7a,
∴f′(x)=3x2+2ax+b,
又f(x)=x3+ax2+bx-a2-7a在x=1處取得極大值10,
∴f′(1)=3+2a+b=0,f(1)=1+a+b-a2-7a=10,
∴a2+8a+12=0,
∴a=-2,b=1或a=-6,b=9.
當a=-2,b=1時,f′(x)=3x2-4x+1=(3x-1)(x-1),
當$\frac{1}{3}$<x<1時,f′(x)<0,當x>1時,f′(x)>0,
∴f(x)在x=1處取得極小值,與題意不符;
當a=-6,b=9時,f′(x)=3x2-12x+9=3(x-1)(x-3)
當x<1時,f′(x)>0,當<x<3時,f′(x)<0,
∴f(x)在x=1處取得極大值,符合題意;
∴g(x)=-6x3-18x2在[t,t+1]上單調遞增,
∴g′(x)=-18x2-36x>0,即x(x+2)<0,即-2<x<0在[t,t+1]上恒成立,
∴$\left\{\begin{array}{l}{t>-2}\\{t+1<0}\end{array}\right.$,解得-2<t<-1,
故t的取值范圍為(-2,-1),
故選:A.
點評 本題考查函數(shù)在某點取得極值的條件,求得f′(x)=3x2+2ax+b,利用f′(1)=0,f(1)=10求得a,b是關鍵,考查分析、推理與運算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com