函數(shù)f(x)在定義域R上不是常數(shù)函數(shù),且f(x)滿足條件:對任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),
則f(x)是( )
A.奇函數(shù)但非偶函數(shù)
B.偶函數(shù)但非奇函數(shù)
C.既是奇函數(shù)又是偶函數(shù)
D.是非奇非偶函數(shù)
【答案】分析:根據(jù)對任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x),知f(2+x)=f[1+(1+x)]=-f(1+x)=f(x),f(2-x)=f[1+(1-x)]=-f(1-x)=f(-x),故f(x)為偶函數(shù),反之易得函數(shù)f(x)不可能為奇函數(shù),即可得答案.
解答:解:∵對任意x∈R,都有f(2+x)=f(2-x),f(1+x)=-f(x)
∴f(2+x)=f[1+(1+x)]=-f(1+x)=f(x),f(2-x)=f[1+(1-x)]=-f(1-x)=f(-x)
∴f(x)=f(-x)
故f(x)為偶函數(shù)
又∵既是奇函數(shù)又是偶函數(shù)只有常數(shù)函數(shù),函數(shù)f(x)在定義域R上不是常數(shù)函數(shù)
∴函數(shù)f(x)不可能為奇函數(shù)
故選B
點(diǎn)評:本題考查了函數(shù)奇偶性的判斷,還有變量整體代入法,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
x2+1
,令g(x)=f(
1
x
)

(1)求函數(shù)f(x)的值域;
(2)任取定義域內(nèi)的5個自變量,根據(jù)要求計(jì)算并填表;觀察表中數(shù)據(jù)間的關(guān)系,猜想一個等式并給予證明;
x
f(x)-
1
2
g(x)-
1
2
(3)如圖,已知f(x)在區(qū)間[0,+∞)的圖象,請據(jù)此在該坐標(biāo)系中補(bǔ)全函數(shù)f(x)在定義域內(nèi)的圖象,并在同一坐標(biāo)系中作出函數(shù)g(x)的圖象.請說明你的作圖依據(jù).
精英家教網(wǎng)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=log2(2x-1)
(Ⅰ)求函數(shù)f(x)的定義域;
(Ⅱ)判斷函數(shù)f(x)在定義域上的單調(diào)性并加以證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-1-lnx(a∈R).
(1)討論函數(shù)f(x)在定義域內(nèi)的極值點(diǎn)的個數(shù);
(2)若函數(shù)f(x)在x=1處取得極值,對?x∈(0,+∞),f(x)≥bx-2恒成立,求實(shí)數(shù)b的取值范圍;
(3)當(dāng)x>y>e-1時,求證:ex-y
ln(x+1)ln(y+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)在定義域(0.+∞)上是單調(diào)函數(shù),若對于任意x∈(0,+∞),都有f(f(x)-
1
x
)=2,則f(
1
5
)的值是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln
1-x1+x

(1)求函數(shù)f(x)的定義域;
(2)判斷函數(shù)f(x)的奇偶性并加以證明;
(3)判斷函數(shù)f(x)在定義域上的單調(diào)性并加以證明.

查看答案和解析>>

同步練習(xí)冊答案