已知為平面上的一個定點,A、B、C是該平面上不共線的三個動點,點滿足條件,則動點的軌跡一定通過的(   )

    A.重心             B.垂心             C.外心             D.內(nèi)心

                                                                       

C

解析:設(shè)線段BC的中點為D,則,∴,

    ∴,

    ∴

    ,

    ∴,即點一定在線段的垂直平分線上,

    即動點的軌跡一定通過的外心,選C.

    答案:C

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

給出以下幾個命題:
①由曲線y=x2與直線y=2x圍成的封閉區(qū)域的面積為
4
3
;
②已知點A是定圓C上的一個定點,線段AB為圓的動弦,若
OP
=
1
2
(
OA
+
OB
)
,O為坐標原點,則動點P的軌跡為圓;
③把5本不同的書分給4個人,每人至少1本,則不同的分法種數(shù)為A54•A41=480種;
④若直線l∥平面α,直線l⊥直線m,直線l?平面β,則β⊥α.
其中,正確的命題有
 
.(將所有正確命題的序號都填在橫線上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系xOy中,已知圓C1:(x-1)2+y2=16,圓C2:(x+1)2+y2=1,點S為圓C1上的一個動點,現(xiàn)將坐標平面折疊,使得圓心C2(-1,0)恰與點S重合,折痕與直線SC1交于點P.
(1)求動點P的軌跡方程;
(2)過動點S作圓C2的兩條切線,切點分別為M、N,求MN的最小值;
(3)設(shè)過圓心C2(-1,0)的直線交圓C1于點A、B,以點A、B分別為切點的兩條切線交于點Q,求證:點Q在定直線上.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

給出下列五個命題:
①已知直線a,b和平面α,若a∥b,b∥α,則a∥α;
②平面上到一個定點和一條定直線的距離相等的點的軌跡是一條拋物線;
③雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0),則直線y=
b
a
x+m(m∈R)與雙曲線有且只有一個公共點;
④若兩個平面垂直,那么一個平面內(nèi)與它們的交線不垂直的直線與另一個平面也不垂直;
⑤過M(2,0)的直線l與橢圓
x2
2
+y2=1交于P1P2兩點,線段P1P2中點為P,設(shè)直線l斜率為k1(k≠0),直線OP的斜率為k2,則k1k2等于-
1
2

其中,正確命題的序號為
④⑤
④⑤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知四棱錐P-ABCD中,點M是PC的中點,點E是AB上的一個動點,且該四棱錐的三視圖如圖所示,其中正視圖和側(cè)視圖是直角三角形.
(I)求證:PA∥平面BDM;
(II)若點E是AB的中點,求證:CE⊥平面PDE;
(III)無論點E在何位置,是否均有三棱錐C-PDE的體積為定值?若是,請求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:2013-2014學年安徽省六校教育研究會高三2月聯(lián)考理科數(shù)學試卷(解析版) 題型:解答題

在平面直角坐標系中,已知分別是橢圓的左、右焦點,橢圓與拋物線有一個公共的焦點,且過點.

(Ⅰ)求橢圓的方程;

(Ⅱ)設(shè)是橢圓在第一象限上的任一點,連接,點作斜率為的直線,使得與橢圓有且只有一個公共點,設(shè)直線的斜率分別為,,試證明為定值,并求出這個定值

III)在第(Ⅱ)問的條件下,,設(shè)于點,

證明:在橢圓上移動時,在某定直線上.

 

查看答案和解析>>

同步練習冊答案