某校為了了解新的一輪教改模式有效性的“認可度”,在全校師生(可認為很多人)進行了“認可度”的問卷調(diào)查,現(xiàn)隨機抽查50名師生,對他們的“認可度”統(tǒng)計分析得如圖
(1)求這50名師生的“認可度”的平均值(每一區(qū)間取中點值計算)
(2)設表中個區(qū)間“認可度”分數(shù)的中點值構(gòu)成集合A,那么從集合A中任取一值,記下該值后放回,然后再隨機任選一個又記下該值后又放回,設第一次的值記為x,第二次的值記為y,求y>x的概率.
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率,頻率分布直方圖
專題:概率與統(tǒng)計
分析:(1)根據(jù)頻率分布表,和平均數(shù)的求法求出50名師生的“認可度”的平均值即可
(2)設表中個區(qū)間“認可度”分數(shù)的中點值構(gòu)成集合A,則集合A={10,30,50,70,90},有放回的取兩次,共有5×5=25種,其中滿足其中y>x的有10種,根據(jù)概率公式計算即可
解答: 解:(1)
.
x
=
1
50
(10×1+30×4+50×5+70×33+90×7)=66.4,
(2)設表中個區(qū)間“認可度”分數(shù)的中點值構(gòu)成集合A,則集合A={10,30,50,70,90},
從集合A中任取一值,記下該值后放回,然后再隨機任選一個又記下該值后又放回,共有5×5=25種,每一次為(x,y),包括如下:
(10,10),(10,30),(10,40),(10,70),(10,90),
(30,10),(30,30),(30,50),(30,70),(30,90),
(50,10),(50,30),(50,50),(50,70),(50,90),
(70,10),(70,30),(70,50),(70,70),(70,90),
(90,10),(90,30),(90,50),(90,70),(90,90),
其中y>x的(10,30),(10,40),(10,70),(10,90),(30,50),(30,70),(30,90),(50,70),(50,90),(70,90)共10種,
故y>x的概率P=
10
25
=
2
5
點評:本題考查了等可能事件的概率,關鍵是一一列舉出所有的基本事件,屬于基礎題
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

在平面直角坐標系中,O為原點,A(0,sinα),B(2cosα,0),動點C滿足|
AC
|=1,則|
OA
+
OB
+
OC
|的最大值是
 

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某程序框圖如圖所示,則輸出的結(jié)果S=( 。
A、11B、26C、57D、120

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

若函數(shù)f(x)和g(x)滿足:①在區(qū)間[a,b]上均有定義;②函數(shù)y=f(x)-g(x)在區(qū)間[a,b]上至少有一個零點,則稱f(x)和g(x)在[a,b]上具有關系G.
(1)若f(x)=lgx,g(x)=3-x,試判斷f(x)和g(x)在[1,4]上是否具有關系G,并說明理由;
(2)若f(x)=2|x-2|+1和g(x)=mx2在[1,4]上具有關系G,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

袋子中放有大小和形狀相同的小球若干個,其中標號為0的小球1個,標號為1的小球1個,標號為2的小球n個.已知從袋子中隨機抽取1個小球,取到標號是2的小球的概率是
2
3

(1)求n的值;
(2)(2)從袋子中不放回地隨機抽取2個小球,記第一次取出的小球標號為a,第二次取出的小球標號為b.記事件A表示“a+b=2”,求事件A的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知
a
=(2,4,x),
b
=(2,y,2),若|
a
|=6,
a
b
,則x+y的值是( 。
A、-3或1B、3或-1
C、-3D、1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知|
a
|=4,|
b
|=2,且
a
b
的夾角為120°,求
(1)|
a
+
b
|;
(2)若(
a
b
)⊥(2
a
-3
b
),求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

甲乙兩同學在高二年級的6次數(shù)學測驗成績(滿分100分)如圖莖葉圖所示,則下列說法正確的是( 。
A、甲乙同學的平均成績相同,但是甲同學的成績比乙穩(wěn)定
B、甲乙同學的平均成績相同,但是乙同學的成績比甲穩(wěn)定
C、甲同學的平均成績比乙同學好,但是乙同學的成績比甲穩(wěn)定
D、乙同學的平均成績比甲同學好,但是甲同學的成績比乙穩(wěn)定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

二階矩陣M對應的變換TM將曲線x2+x-y+1=0變?yōu)榍2y2-x+2=0.求M-1

查看答案和解析>>

同步練習冊答案