14.如圖,已知正方體 ABCD-A1B1C1D1的棱長(zhǎng)為3,M,N 分別是棱 AA1,AB上的點(diǎn),且 AM=AN=1
(1)求證:平面AMN∥平面DD1C
(2)平面 MNCD1將此正方體分為兩部分,求這兩部分的體積之比.

分析 (1)推導(dǎo)出AN∥平面DD1C,AM∥平面DD1C,由此能證明平面AMN∥平面DD1C.
(2)記平面MNCD1 將正方體分成兩部分的下部分體積為V1,上部分體積為V2,連接D1A,D1N,DN,則幾何體 D1-AMN,D1-ADN,D1-CDN均為三棱錐,由此能求出平面 MNCD1分此正方體的兩部分體積的比.

解答 證明:(1)在正方體ABCD-A1B1C1D1中,
∵M(jìn),N 分別是棱 AA1,AB上的點(diǎn),且 AM=AN=1,
∴AN∥DC,
又∵DC?平面DD1C,AN?平面DD1C,
∴AN∥平面DD1C,
同理,AM∥平面DD1C,
又∵AM∩AN=A,∴平面AMN∥平面DD1C.
解:(2)記平面MNCD1 將正方體分成兩部分的下部分體積為V1,上部分體積為V2,
如圖,連接D1A,D1N,DN,則幾何體 D1-AMN,D1-ADN,D1-CDN均為三棱錐,
∴${V}_{1}={V}_{{D}_{1}-AMN}+{V}_{{D}_{1}-ADN}+{V}_{{D}_{1}-CDN}$
=$\frac{1}{3}{S}_{△AMN}•{D}_{1}{A}_{1}$+$\frac{1}{3}{S}_{△ADN}•{D}_{1}D$+$\frac{1}{3}{S}_{△CDN}•{D}_{1}D$
=$\frac{1}{3}×\frac{1}{2}×3+\frac{1}{3}×\frac{3}{2}×3+\frac{1}{3}×\frac{9}{2}×3$
=$\frac{13}{2}$,
從而${V}_{2}={V}_{ABCD-{A}_{1}{B}_{1}{C}_{1}{D}_{1}}-{V}_{AMN-{D}_{1}C}$=27-$\frac{13}{2}$=$\frac{41}{2}$,
∴$\frac{{V}_{1}}{{V}_{2}}=\frac{13}{41}$.
所以平面MNCD1分此正方體的兩部分體積的比為$\frac{13}{41}$.

點(diǎn)評(píng) 本題考查面面平行的證明,考查平面分正方體的兩部分體積的比的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.中心在原點(diǎn),一焦點(diǎn)為${F_1}(0,-5\sqrt{2})$的橢圓截直線y=3x-2所得弦的中點(diǎn)的橫坐標(biāo)為$\frac{1}{2}$,求此橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.已知點(diǎn)P(x,y)滿足x2+y2<2,則滿足到直線x-y+2$\sqrt{2}$=0的距離d∈[1,3]的點(diǎn)P概率為( 。
A.$\frac{1}{2}+\frac{π}{2}$B.$\frac{1}{2}-\frac{π}{2}$C.$\frac{1}{4}-\frac{1}{2π}$D.$\frac{1}{4}+\frac{1}{2π}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.設(shè)數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則b${\;}_{{a}_{1}}$+b${\;}_{{a}_{2}}$+b${\;}_{{a}_{3}}$+…+b${\;}_{{a}_{6}}$=126.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.(文科)如圖,在三棱柱ABC-A1B1C1中,側(cè)棱AA1⊥底面ABC,AB⊥BC,D為AC的中點(diǎn),AA1=AB=2.
(Ⅰ)求證:AB1∥平面BC1D;
(Ⅱ)設(shè)BC=3,求四棱錐B-DAA1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.求值:
(1)2$\sqrt{3}$×$\root{3}{1.5}$×$\root{6}{12}$
(2)已知x+$\frac{1}{x}$=3,求x${\;}^{\frac{1}{2}}$+x${\;}^{-\frac{1}{2}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.集合{x∈N|x≤3}還可以表示為(  )
A.{0,1,2,3}B.{2,1,3}C.{1,2,3,4}D.{x|0≤x≤3}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合M={x|x>1},P={x|x2-6x+9=0},則下列關(guān)系中正確的是( 。
A.M=PB.P?MC.M?PD.M∪P=R

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.方程(a-1)x2+(2-a)y2=(a-1)(2-a)中,當(dāng)1<a<2時(shí),它表示(  )
A.橢圓或圓B.雙曲線C.橢圓D.

查看答案和解析>>

同步練習(xí)冊(cè)答案