2.設(shè)數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,數(shù)列{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則b${\;}_{{a}_{1}}$+b${\;}_{{a}_{2}}$+b${\;}_{{a}_{3}}$+…+b${\;}_{{a}_{6}}$=126.

分析 由已知分別寫出等差數(shù)列和等比數(shù)列的通項(xiàng)公式,求出a1至a7的值,則對(duì)應(yīng)的b${\;}_{{a}_{1}}$至b${\;}_{{a}_{6}}$的值可求,答案可求.

解答 解:∵數(shù)列{an}是以2為首項(xiàng),1為公差的等差數(shù)列,∴an=2+(n-1)×1=n+1.
則a1=2,a2=3,a3=4,a4=5,a5=6,a6=7,
{bn}是以1為首項(xiàng),2為公比的等比數(shù)列,則bn=1×2n-1=2n-1,
∴b${\;}_{{a}_{1}}$+b${\;}_{{a}_{2}}$+b${\;}_{{a}_{3}}$+…+b${\;}_{{a}_{6}}$=b2+b3+b4+b5+b6+b7
=2+4+8+16+32+64=126.
故答案為:126

點(diǎn)評(píng) 本題考查了等差數(shù)列和等比數(shù)列的通項(xiàng)公式,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.函數(shù)y=|x|-1的圖象是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.若函數(shù)f(x)=-|3x+a|在區(qū)間[-2,+∞)上是減函數(shù),求實(shí)數(shù)a取值范圍a≥6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知圓C經(jīng)過點(diǎn)A(2,0),與直線x+y=2相切,且圓心C在直線2x+y-1=0上.
(1)求圓C的方程;
(2)已知直線l經(jīng)過點(diǎn)(0,1),并且被圓C截得的弦長為2,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.若xlog23=1,則3x+9-x的值為$\frac{9}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知f(x)=2x3-x,求:
(1)f(2),f(2a);
(2)判斷f(x)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,已知正方體 ABCD-A1B1C1D1的棱長為3,M,N 分別是棱 AA1,AB上的點(diǎn),且 AM=AN=1
(1)求證:平面AMN∥平面DD1C
(2)平面 MNCD1將此正方體分為兩部分,求這兩部分的體積之比.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知函數(shù)f(x+1)的定義域是[1,9),則函數(shù)y=f(x-1)+$\sqrt{7-x}$的定義域是[3,7].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知函數(shù)f(x)=lnx+$\frac{1}{2}$ax2-2x有兩個(gè)極值點(diǎn),則a的取值范圍是( 。
A.(-∞,1)B.(0,2)C.(0,1)D.(0,3)

查看答案和解析>>

同步練習(xí)冊(cè)答案