已知
1+tanα
1-tanα
=3+2
2
,求cos2(π-α)+sin(π+α)cos(π-α)+2sin2(π-α)的值.
考點(diǎn):運(yùn)用誘導(dǎo)公式化簡(jiǎn)求值,同角三角函數(shù)基本關(guān)系的運(yùn)用
專題:三角函數(shù)的求值
分析:由條件求得tanα的值,再利用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式化簡(jiǎn)所給的式子,可得結(jié)果.
解答: 解:∵
1+tanα
1-tanα
=3+2
2
,
∴tanα=
1+
2
2+
2
=
2
,
∴cos2(π-α)+sin(π+α)cos(π-α)+2sin2(π-α)=cos2α+sinαcosα+2sin2α=
cos2α+sinαcosα+2sin2α
sin2α+cos2α

=
1+tanα+2tan2α
tan2α+1
=
1+
2
+2×2
2+1
=
5+
2
3
點(diǎn)評(píng):本題主要考查同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式的應(yīng)用,以及三角函數(shù)在各個(gè)象限中的符號(hào),屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=|x-1+a|+|x-a|
(1)若a≥2,x∈R,證明:f(x)≥3;
(2)若f(1)<2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

經(jīng)過雙曲線
x2
a2
-
y2
b2
=1(a>b>0)的右焦點(diǎn)為F作該雙曲線一條漸近線的垂線與兩條漸近線相交于M,N兩點(diǎn),若O是坐標(biāo)原點(diǎn),△OMN的面積是
2
3
a2
,則該雙曲線的離心率是(  )
A、2
B、
5
C、
5
2
D、
6
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x與雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)有相同的焦點(diǎn)F,點(diǎn)A,B是兩曲線的交點(diǎn),若(
OA
+
OB
)•
AF
=0,則雙曲線的離心率為( 。
A、
2
+2
B、
5
+1
C、
3
+1
D、
2
+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}的前n項(xiàng)和Sn滿足Sn=
n2
2
+
n
2
,{bn}為等比數(shù)列,且b2=
1
4
,b5=-
1
32

(1)若cn=4+ban,求數(shù)列{cn}的通項(xiàng)公式;
(2)設(shè)Tn為數(shù)列{cn}的前n項(xiàng)和,若對(duì)任意的n∈N+,都有p•(Tn-4n)∈[1,3],求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2014年7月16日,中國(guó)互聯(lián)網(wǎng)絡(luò)信息中心發(fā)布《第三十四次中國(guó)互聯(lián)網(wǎng)發(fā)展?fàn)顩r報(bào)告》,報(bào)告顯示:我國(guó)網(wǎng)絡(luò)購(gòu)物用戶已達(dá)3.32億.為了了解網(wǎng)購(gòu)者一次性購(gòu)物金額情況,某統(tǒng)計(jì)部門隨機(jī)抽查了6月1日這一天100名網(wǎng)購(gòu)者的網(wǎng)購(gòu)情況,得到如下數(shù)據(jù)統(tǒng)計(jì)表.已知網(wǎng)購(gòu)金額在2000元以上(不含2000元)的頻率為0.4.
網(wǎng)購(gòu)金額(元)頻數(shù)頻率
(0,500]50.05
(500,1000]xp
(1000,1500]150.15
(1500,2000]250.25
(2000,2500]300.3
(2500,3000]yq
合計(jì)1001.00
(Ⅰ)確定x,y,p,q的值,并補(bǔ)全頻率分布直方圖;
(Ⅱ)為進(jìn)一步了解網(wǎng)購(gòu)金額的多少是否與網(wǎng)齡有關(guān),對(duì)這100名網(wǎng)購(gòu)者調(diào)查顯示:購(gòu)物金額在2000元以上的網(wǎng)購(gòu)者中網(wǎng)齡3年以上的有35人,購(gòu)物金額在2000元以下(含2000元)的網(wǎng)購(gòu)者中網(wǎng)齡不足3年的有20人.
①請(qǐng)將列聯(lián)表補(bǔ)充完整;
網(wǎng)齡3年以上網(wǎng)齡不足3年合計(jì)
購(gòu)物金額在2000元以上35
購(gòu)物金額在2000元以下20
合計(jì)100
②并據(jù)此列聯(lián)表判斷,是否有97.5%的把握認(rèn)為網(wǎng)購(gòu)金額超過2000元與網(wǎng)齡在三年以上有關(guān)?
參考數(shù)據(jù):
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(參考公式:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在160與5中間插入四個(gè)數(shù),使它們同這兩個(gè)數(shù)成等比數(shù)列,這四個(gè)數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=|x-a|-2a+1(a∈R).
(Ⅰ)若a=1,解不等式f(x)<|x+1|;
(Ⅱ)若對(duì)任意x∈[1,2],f(x)≥0恒成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A、B、C為三個(gè)不共線的點(diǎn),P為△ABC所在平面內(nèi)一點(diǎn),若
PA
+
PB
=
PC
+
AB
,則點(diǎn)P與△ABC的位置關(guān)系是( 。
A、點(diǎn)P在△ABC內(nèi)部
B、點(diǎn)P在△ABC外部
C、點(diǎn)P在直線AB上
D、點(diǎn)P在直線AC上

查看答案和解析>>

同步練習(xí)冊(cè)答案