A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
分析 根據(jù)直線平行的等價條件以及充分條件和必要條件的定義進行判斷即可.
解答 解:若a=-1,則兩條直線方程分別為-x+3y+2=0與x-y+1=0此時兩直線平行,即充分性成立,
若兩直線平行,則ax+3y+2=0的斜截式方程為y=-$\frac{a}{3}$x-$\frac{2}{3}$,則直線斜率k=-$\frac{a}{3}$,
x+(a-2)y+1=0的斜截式方程為為y=-$\frac{1}{a-2}$x-$\frac{1}{a-2}$,(a≠2)
若兩直線平行則-$\frac{1}{a-2}$=-$\frac{a}{3}$,且-$\frac{1}{a-2}$≠-$\frac{2}{3}$,
由-$\frac{1}{a-2}$=-$\frac{a}{3}$,得a(a-2)=3,即a2-2a-3=0得a=-1或a=3,
由-$\frac{1}{a-2}$≠-$\frac{2}{3}$得a≠$\frac{7}{2}$,
即“a=-1”是“直線ax+3y+2=0與直線x+(a-2)y+1=0平行”的充分不必要條件,
故選:A.
點評 本題主要考查充分條件和必要條件的判斷,利用直線平行的等價條件是解決本題的關(guān)鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | ab2=9 | B. | a2b=9,a<0 | C. | b=9a2,a<0 | D. | b2=9a |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的最小正周期為π | |
B. | 函數(shù)f(x)的值域為[-$\frac{7}{2}$,$\frac{7}{2}$] | |
C. | 函數(shù)f(x)的圖象關(guān)于直線x=-$\frac{1}{6}$對稱 | |
D. | 函數(shù)f(x)的圖象向右平移$\frac{1}{3}$個單位得到函數(shù)y=Asinωx的圖象 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com