已知橢圓的兩個(gè)焦點(diǎn)分別為,.點(diǎn)M(1,0)與橢圓短軸的兩個(gè)端點(diǎn)的連線相互垂直.
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知點(diǎn)N的坐標(biāo)為(3,2),點(diǎn)P的坐標(biāo)為(m,n)(m≠3).過(guò)點(diǎn)M任作直線l與橢圓C相交于A,B兩點(diǎn),設(shè)直線AN,NP,BN的斜率分別為k1,k2,k3,若k1+k3=2k2,試求m,n滿(mǎn)足的關(guān)系式.
【答案】分析:(Ⅰ)依題意,,b=1,求出a的值,即可得到橢圓C的方程;
(Ⅱ)①當(dāng)直線l的斜率不存在時(shí),將直線x=1與橢圓方程聯(lián)立,求得A,B的坐標(biāo),利用k1+k3=2k2,可得m,n滿(mǎn)足的關(guān)系式;②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程代入整理化簡(jiǎn),利用韋達(dá)定理及k1+k3=2k2,可得k2的值從而可得m,n滿(mǎn)足的關(guān)系式.
解答:解:(Ⅰ)依題意,,b=1,所以
故橢圓C的方程為.…(4分)
(Ⅱ)①當(dāng)直線l的斜率不存在時(shí),由解得
不妨設(shè),
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131024191320957035681/SYS201310241913209570356018_DA/9.png">,又k1+k3=2k2,所以k2=1,
所以m,n的關(guān)系式為,即m-n-1=0.…(7分)
②當(dāng)直線l的斜率存在時(shí),設(shè)直線l的方程為y=k(x-1).
將y=k(x-1)代入整理化簡(jiǎn)得,(3k2+1)x2-6k2x+3k2-3=0.
設(shè)A(x1,y1),B(x2,y2),則,.…(9分)
又y1=k(x1-1),y2=k(x2-1).
所以====.…(12分)
所以2k2=2,所以,所以m,n的關(guān)系式為m-n-1=0.…(13分)
綜上所述,m,n的關(guān)系式為m-n-1=0.…(14分)
點(diǎn)評(píng):本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查直線的斜率,利用k1+k3=2k2,確定k2的值是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的兩個(gè)焦點(diǎn)分別是F1(0,-2
2
),F2(0,2
2
)
,離心率e=
2
2
3

(1)求橢圓的方程;
(2)一條不與坐標(biāo)軸平行的直線l與橢圓交于不同的兩點(diǎn)M,N,且線段MN中點(diǎn)的橫坐標(biāo)為-
1
2
,求直線l的傾斜角的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求下列各曲線的標(biāo)準(zhǔn)方程.
(1)已知橢圓的兩個(gè)焦點(diǎn)分別是(-2,0),(2,0),并且經(jīng)過(guò)點(diǎn)(
5
2
,-
3
2
).
(2)已知拋物線焦點(diǎn)在x軸上,焦點(diǎn)到準(zhǔn)線的距離為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012年山東省高考模擬預(yù)測(cè)卷(四)文科數(shù)學(xué)試卷(解析版) 題型:解答題

給定橢圓  ,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿(mǎn)足

(Ⅰ)求橢圓及其“伴隨圓”的方程;

(Ⅱ)過(guò)點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)理卷 題型:解答題

((本小題滿(mǎn)分14分)

給定橢圓  ,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿(mǎn)足

(Ⅰ)求橢圓及其“伴隨圓”的方程

(Ⅱ)試探究y軸上是否存在點(diǎn)(0, ),使得過(guò)點(diǎn)作直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.若存在,請(qǐng)求出的值;若不存在,請(qǐng)說(shuō)明理由。

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2010-2011學(xué)年廣東省汕頭市高三第一次模擬考試數(shù)學(xué)文卷 題型:解答題

(本小題滿(mǎn)分14分)

給定橢圓  ,稱(chēng)圓心在坐標(biāo)原點(diǎn),半徑為的圓是橢圓的“伴隨圓”. 已知橢圓的兩個(gè)焦點(diǎn)分別是,橢圓上一動(dòng)點(diǎn)滿(mǎn)足

(Ⅰ) 求橢圓及其“伴隨圓”的方程;

(Ⅱ) 過(guò)點(diǎn)P作直線,使得直線與橢圓只有一個(gè)交點(diǎn),且截橢圓的“伴隨圓”所得的弦長(zhǎng)為.求出的值.

 

查看答案和解析>>

同步練習(xí)冊(cè)答案