某學(xué)生在上學(xué)路上要經(jīng)過(guò)4個(gè)路口,假設(shè)在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
1
3
,
(Ⅰ)求這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率;
(2)求這名學(xué)生在上學(xué)路上恰好兩個(gè)路口遇到遇到紅燈的概率.
考點(diǎn):相互獨(dú)立事件的概率乘法公式,互斥事件的概率加法公式
專(zhuān)題:應(yīng)用題,概率與統(tǒng)計(jì)
分析:(1)這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈是指事件“這名學(xué)生在第一和第二個(gè)路口沒(méi)有遇到紅燈,在第三個(gè)路口遇到紅燈”,從而可求概率;
(2)利用相互獨(dú)立事件的概率公式,即可求解.
解答: 解:(1)∵在各路口是否遇到紅燈是相互獨(dú)立的,遇到紅燈的概率都是
1
3
,
∴這名學(xué)生在上學(xué)路上到第三個(gè)路口時(shí)首次遇到紅燈的概率P1=
2
3
×
2
3
×
1
3
=
4
27
;
(2)這名學(xué)生在上學(xué)路上恰好兩個(gè)路口遇到遇到紅燈的概率P2=
C
2
4
×(
1
3
2×
2
3
=
8
27
點(diǎn)評(píng):本題以實(shí)際問(wèn)題為載體,考查相互獨(dú)立事件的概率,考查學(xué)生分析解決問(wèn)題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線(xiàn)C:y2=2px(p>0)的準(zhǔn)線(xiàn)為l,焦點(diǎn)為F,⊙M的同心在x軸的正半軸上,且與y軸相切,過(guò)原點(diǎn)作傾斜角為
π
3
的直線(xiàn)n,交l于點(diǎn)A,交⊙M于另一點(diǎn)B,且|AO|=|OB|=2.
(Ⅰ)求⊙M和拋物線(xiàn)C的方程;
(Ⅱ)過(guò)點(diǎn)F作兩條斜率存在且互相垂直的相線(xiàn)l1、l2,設(shè)l1與拋物線(xiàn)C相交于點(diǎn)P、Q,l2與拋物線(xiàn)C相交于點(diǎn)G、H,求
PG
HQ
的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某班聯(lián)歡晚會(huì)玩投球游戲,規(guī)則如下:每人最多可連續(xù)投5只球,累積有三次投中即可獲獎(jiǎng);否則不獲獎(jiǎng).同時(shí)要求在以下兩種情況下中止投球:①已獲獎(jiǎng);②累積3次沒(méi)有投中目標(biāo).已知某同學(xué)每次投中目標(biāo)的概率是常數(shù)p(p>0.5),且投完3次就中止投擲的概率為
1
3
,設(shè)游戲結(jié)束時(shí),該同學(xué)投出的球數(shù)為X.
(1)求p的值;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,將一副三角板拼接,使它們有公共邊BC,且使兩個(gè)三角板所在平面互相垂直,若∠BAC=∠CBD=90°,AB=AC,∠BDC=60°,BC=6.
(Ⅰ)求證:平面ABD⊥平面ACD.
(Ⅱ)求二面角A-CD-B的平面角的余弦值.
(Ⅲ)求B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)點(diǎn)A(3,
5
2
),B(4,
3
),C(-3,-
5
2
),D(5,0),其中三點(diǎn)在雙曲線(xiàn)
x2
a2
-
y2
b2
=1,(a>0,b>0)上,另一點(diǎn)在直線(xiàn)l上.
(1)求雙曲線(xiàn)方程;
(2)設(shè)直線(xiàn)l的斜率存在且為k,它與雙曲線(xiàn)的同一支分別交于兩點(diǎn)E、F(F點(diǎn)在上方,E點(diǎn)在下方),M、N分別為雙曲線(xiàn)的左、右頂點(diǎn),求滿(mǎn)足條件S△MDF=4S△DNE的k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,直三棱柱ABC-A1B1C1中,D、E分別是AB,BB1的中點(diǎn).
(1)證明:BC1∥平面A1CD;
(2)設(shè)AA1=AC=CB=1,AB=
2
,求三棱錐D一A1CE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊分別為a、b、c且滿(mǎn)足cosA=
3
5
,
AB
AC
=3.
(1)求△ABC中的面積;   
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知點(diǎn)A(-2,0),B(2,0),動(dòng)點(diǎn)C、D依次滿(mǎn)足|
AC
|=2,
AD
=
1
2
AB
+
AC
).
(1)求動(dòng)點(diǎn)D的軌跡方程;
(2)過(guò)點(diǎn)A作直線(xiàn)l交以A、B為焦點(diǎn)的橢圓于M、N兩點(diǎn),若線(xiàn)段MN的中點(diǎn)到y(tǒng)軸的距離為
4
5
,且直線(xiàn)l與圓
x2+y2=1相切,求該橢圓的方程;
(3)經(jīng)過(guò)(2)中橢圓的上頂點(diǎn)G作直線(xiàn)m、n,使m⊥n,直線(xiàn)m、n分別交橢圓于點(diǎn)P、Q.求證:PQ必過(guò)y軸上一定點(diǎn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從4名男生和3名女生中任選3人參加演講比賽,
①求所選3人都是男生的概率;
②求所選3人中至少有1名男生1名女生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案