數(shù)列{an},a1=1,an+1=2an-n2+3n(n∈N*)
是否存在常數(shù)λ、μ,使得數(shù)列{an+λn2+μn}是等比數(shù)列,若存在,求出λ、μ的值,若不存在,說(shuō)明理由.
設(shè)bn=,證明:當(dāng)n≥2時(shí),.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源:2011屆湖北省天門(mén)市高三天5月模擬理科數(shù)學(xué)試題 題型:解答題
已知數(shù)列{an},且x=是函數(shù)f(x)=an-1x3-3[(t+1)an-an+1] x+1(n≥2)的一個(gè)極值點(diǎn).?dāng)?shù)列{an}中a1=t,a2=t2(t>0且t≠1) .
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)記bn=2(1-),當(dāng)t=2時(shí),數(shù)列{bn}的前n項(xiàng)和為Sn,求使Sn>2010的n的最小值;
(3)若cn=,證明:( n∈N﹡).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年湖南省高三上學(xué)期第三次月考文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知f(x)=各項(xiàng)均為正數(shù)的數(shù)列{an}滿(mǎn)足a1=1,an+2=f(an).若a2010=a2012,則a20+a11的值是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆山西省忻州市高一下學(xué)期聯(lián)考數(shù)學(xué)試卷(解析版) 題型:選擇題
數(shù)列{an}滿(mǎn)足a1=1,a2=2, 2an+1=an+an+2,若bn=,則數(shù)列{bn}的前
5項(xiàng)和等于( )
A.1 B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆廣東省高一期中考試文科數(shù)學(xué)試卷A卷(解析版) 題型:解答題
已知函數(shù)f(x)(x∈R)滿(mǎn)足f(x)=,a≠0,f(1)=1,且使f(x)=2x成立的實(shí)數(shù)x只有一個(gè).
(1)求函數(shù)f(x)的表達(dá)式;
(2)若數(shù)列{an}滿(mǎn)足a1=,an+1=f(an),bn=-1,n∈N*,證明數(shù)列{bn}是等比數(shù)列,并求出{bn}的通項(xiàng)公式;
(3)在(2)的條件下,證明:a1b1+a2b2+…+anbn<1(n∈N*).
【解析】解: (1)由f(x)=,f(1)=1,得a=2b+1.
由f(x)=2x只有一解,即=2x,
也就是2ax2-2(1+b)x=0(a≠0)只有一解,
∴b=-1.∴a=-1.故f(x)=.…………………………………………4分
(2)an+1=f(an)=(n∈N*),bn=-1, ∴===,
∴{bn}為等比數(shù)列,q=.又∵a1=,∴b1=-1=,
bn=b1qn-1=n-1=n(n∈N*).……………………………9分
(3)證明:∵anbn=an=1-an=1-=,
∴a1b1+a2b2+…+anbn=++…+<++…+
==1-<1(n∈N*).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2010-2011年云南省芒市高一下學(xué)期期中考試數(shù)學(xué) 題型:選擇題
數(shù)列{an}滿(mǎn)足a1=1,an+1=2an+1(n∈N+),那么a4的值為 ( )
A.4 B.8 C.15 D.31
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com