已知函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,2)對(duì)稱且存在反函數(shù),f(2011)=-2008,則f-1(2012)=________.

-2009
分析:于函數(shù)f(x)的圖象關(guān)于點(diǎn)M(1,2)對(duì)稱,故可得f(1+x)+f(1-x)=4,用恒等式建立相關(guān)的方程即可解出f-1(-2012)的值
解答:∵函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,2)對(duì)稱
∴f(1+x)+f(1-x)=4
令x=2010,得 f(2011)+f(-2009)=4,
又∵f (2011)=-2008
∴f(-2009)=2012
根據(jù)互為反函數(shù)的關(guān)系可得,f-1(2012)=-2009
故答案為:2009
點(diǎn)評(píng):本題主要考查了抽象函數(shù)的對(duì)稱性,以及反函數(shù)的有關(guān)知識(shí),同時(shí)考查了賦值法的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象有且僅有由五個(gè)點(diǎn)構(gòu)成,它們分別為(1,2),(2,3),(3,3),(4,2),(5,2),則f(f(f(5)))=
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•天門模擬)已知函數(shù)f(x)的圖象經(jīng)過點(diǎn)(1,λ),且對(duì)任意x∈R,都有f(x+1)=f(x)+2.?dāng)?shù)列{an}滿足a1=λ-2,2an+1=
2n,n為奇數(shù)
f(an),n為偶數(shù)

(I)求f(n)(n∈N*)的表達(dá)式;
(II)設(shè)λ=3,求a1+a2+a3+…+a2n;
(III)若對(duì)任意n∈N*,總有anan+1<an+1an+2,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象關(guān)于原點(diǎn)對(duì)稱,且當(dāng)x<0時(shí),f(x)=2x-4,那么當(dāng)x>0時(shí),f(x)=
2x+4
2x+4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•焦作一模)已知函數(shù)f(x)的圖象過點(diǎn)(
π
4
,-
1
2
),它的導(dǎo)函數(shù)f′(x)=Acos(ωx+φ)(x∈R)的圖象的一部分如圖所示,其中A>0,ω>0,|φ|<
π
2
,為了得到函
數(shù)f(x)的圖象,只要將函數(shù)y=sinx(x∈R)的圖象上所有的點(diǎn)(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)的圖象關(guān)于直線x=2對(duì)稱,且當(dāng)x≠2時(shí)其導(dǎo)函數(shù)f′(x)滿足xf′(x)>2f′(x),若2<a<4,則下列表示大小關(guān)系的式子正確的是( 。
A、f(2a)<f(3)<f(log2a)B、f(3)<f(log2a)<f(2a)C、f(log2a)<f(3)<f(2a)D、f(log2a)<f(2a)<f(3)

查看答案和解析>>

同步練習(xí)冊(cè)答案