【題目】已知數(shù)列為等差數(shù)列,,數(shù)列的前項和為,若對一切,恒有,則能取到的最大整數(shù)是( )

A. 6 B. 7 C. 8 D. 9

【答案】B

【解析】

由題意和等差數(shù)列的通項公式、前n項和公式,求出首項和公差,再代入通項公式求出an,再求出和Sn,設(shè)Tn=S2n﹣Sn并求出,再求出Tn+1作差判斷Tn+1﹣Tn后判斷出Tn的單調(diào)性,求出Tn的最小值,列出恒成立滿足的條件求出m的范圍.再求滿足條件的m值.

設(shè)數(shù)列{an}的公差為d,由題意得,

,解得,

∴an=n,且,

∴Sn=1+,

Tn=S2n﹣Sn=,

,

=0

∴Tn+1>Tn,

Tn隨著n的增大而增大,即Tn在n=1處取最小值,

∴T1=S2﹣S1=

對一切n∈N*,恒有成立,

即可,解得m<8,

故m能取到的最大正整數(shù)是7.

故選:B

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】在銳角中,, _______,求的周長的取值范圍.

,且

;

,.

注:這三個條件中選一個,補充在上面的問題中并對其進行求解,如果選擇多個條件分別解答,按第一個解答計分.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知雙曲線CO為坐標原點,FC的右焦點,過F的直線與C的兩條漸近線的交點分別為M、N.OMN為直角三角形,則|MN|=

A. B. 3 C. D. 4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的左、右焦點分別為,離心率,過且與軸垂直的直線與橢圓在第一象限內(nèi)的交點為,且.

(1)求橢圓的方程;

(2)過點的直線交橢圓兩點,當時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018河南豫南九校高三下學期第一次聯(lián)考設(shè)函數(shù)

I)當時, 恒成立,求的范圍;

II)若處的切線為,且方程恰有兩解,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓Ox2+y2=2,直線.ly=kx-2

1)若直線l與圓O相切,求k的值;

2)若直線l與圓O交于不同的兩點A,B,當∠AOB為銳角時,求k的取值范圍;

3)若,P是直線l上的動點,過P作圓O的兩條切線PC,PD,切點為C,D,探究:直線CD是否過定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知不等式的解集為.

1)求;(2)解關(guān)于的不等式

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】,其中為函數(shù)的導數(shù)若對于,,則稱函數(shù)D上的凸函數(shù).

求證:函數(shù)是定義域上的凸函數(shù);

已知函數(shù)上的凸函數(shù).

求實數(shù)a的取值范圍;

求函數(shù),的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,已知橢圓的中心在原點,焦點在軸上,長軸長是短軸長的2倍且經(jīng)過點,平行于的直線軸上的截距為,直線交橢圓于兩個不同點.

1求橢圓的方程;

2的取值范圍.

查看答案和解析>>

同步練習冊答案