已知函數(shù)y=G(x)的圖象過原點(diǎn),其導(dǎo)函數(shù)為y=f(x),函數(shù)f(x)=3x2+2bx+c且滿足f(1-x)=f(1+x).
(1)若f(x)≥0,對x∈[0,3]恒成立,求實(shí)數(shù)c的最小值.(2)設(shè)G(x)在x=t處取得極大值,記此極大值為g(t),求g(t)的值域.
分析:由題意知函數(shù)f(x)關(guān)于x=1對稱,從而可得b=-3,可知f(x)=3x2-6x+c
(1)由f(x)≥0對x∈[0,3]恒成立,得c≥6x-3x2對x∈[0,3]恒成立.構(gòu)造函數(shù)g(x)=-3x2+6x,求該函數(shù)在區(qū)間[0,3]上的最大值,即c≥g(x)max,即可求得c的最小值;
(2)由題意可得,G(x)=x3-3x2+cx,且f(t)=3t2-6t+c=0且t<1,所以g(t)=t3-3t2+ct=t3-3t2+(6t-3t2)t,再對函數(shù)g(t)求導(dǎo),利用導(dǎo)數(shù)求得函數(shù)的最值,即可得函數(shù)的值域.
解答:解:(1)∵f(1-x)=f(1+x),
∴y=f(x)的對稱軸為x=1,即-
b
3
=1

∴b=-3,
∴f(x)=3x2-6x+c,
由f(x)≥0對x∈[0,3]恒成立,得c≥6x-3x2對x∈[0,3]恒成立,
設(shè)g(x)=-3x2+6x=-3(x2-2x),
∴g(x)max=g(1)=-3×12+6×1=3,
∴c≥3,
∴c的最小值為3.
(2)函數(shù)y=G(x)的圖象過原點(diǎn),其導(dǎo)函數(shù)為y=f(x)=3x2-6x+c,
∴G(x)=x3-3x2+cx,
∵G(x)在x=t處取得極大值,
∴f(t)=3t2-6t+c=0且t<1,∴c=(6t-3t2)t,
∴g(t)=t3-3t2+ct=t3-3t2+(6t-3t2)t,
即g(t)=-2t3+3t2,t∈(-∞,1),
∴g'(t)=-6t2+6t,
令g'(t)=0,得t=0或t=1
當(dāng)t<0時(shí),g'(t)<0,
當(dāng)t>0時(shí)g'(t)>0,
∴當(dāng)t=0時(shí),g(t)極小=g(0)=0
故g(t)的值域?yàn)閇0,+∞).
點(diǎn)評:本題考查了二次函數(shù)的解析式問題,涉及了二次函數(shù)的性質(zhì),同時(shí)考查了,同時(shí)考查了恒成立問題,解決恒成立問題的常用方法是轉(zhuǎn)化為函數(shù)最值,有時(shí)采取數(shù)形結(jié)合會簡化運(yùn)算.屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)與f(x)=loga(x+1)(a>1)的圖象關(guān)于原點(diǎn)對稱.
(1)寫出y=g(x)的解析式;
(2)若函數(shù)F(x)=f(x)+g(x)+m為奇函數(shù),試確定實(shí)數(shù)m的值;
(3)當(dāng)x∈[0,1)時(shí),總有f(x)+g(x)≥n成立,求實(shí)數(shù)n的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=lnx,g(x)=
1
2
ax2-(a-1)x,(a∈R).
(Ⅰ)已知函數(shù)y=g(x)的零點(diǎn)至少有一個(gè)在原點(diǎn)右側(cè),求實(shí)數(shù)a的范圍.
(Ⅱ)記函數(shù)y=F(x)的圖象為曲線C.設(shè)點(diǎn)A(x1,y1),B(x2,y2)是曲線C上的不同兩點(diǎn).如果在曲線C上存在點(diǎn)M(x0,y0),使得:①x0=
x1+x2
2
;②曲線C在點(diǎn)M處的切線平行于直線AB,則稱函數(shù)f(x)=存在“中值相依切線”.
試問:函數(shù)G(x)=f(x)-g(x)(a∈R且a≠0)是否存在“中值相依切線”,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=g(x)的圖象與f(x)=x+
1
x
的圖象關(guān)于點(diǎn)A(0,1)對稱.
(1)求y=g(x)的函數(shù)解析式;
(2)設(shè)F(x)=g(x)+
a
x
(a∈R),若對任意x∈(0,2],F(xiàn)(x)≥8恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•棗莊二模)已知函數(shù)f(x)=2co
s
2
 
ωx-1+2
3
cosωxsinωx(0<ω<1)
,直線x=
π
3
是f(x)
圖象的一條對稱軸.
(1)試求ω的值:
(2)已知函數(shù)y=g(x)的圖象是由y=f(x)圖象上的各點(diǎn)的橫坐標(biāo)伸長到原來的2倍,然后再向左平移
3
個(gè)單位長度得到,若g(2α+
π
3
)=
6
5
,α∈(0,
π
2
),求sinα
的值.

查看答案和解析>>

同步練習(xí)冊答案