設(shè)圓C1:x2+y2=5與拋物線C2:x2=2py(p>0)在第一象限內(nèi)的交點(diǎn)為R(2,m).
(Ⅰ)求m的值及拋物線C2的方程;
(Ⅱ)若P在拋物線C2在兩點(diǎn)O,R之間的部分運(yùn)動,其中O為坐標(biāo)原點(diǎn),直線l過點(diǎn)P且與拋物線C2只有一個(gè)公共點(diǎn),l與圓C1相交于兩點(diǎn)A,B,求△OAB的面積的取值范圍.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:綜合題,圓錐曲線的定義、性質(zhì)與方程
分析:(Ⅰ)利用圓C1:x2+y2=5與拋物線C2:x2=2py(p>0)在第一象限內(nèi)的交點(diǎn)為R(2,m),即可求m的值及拋物線C2的方程;
(Ⅱ)求出直線l的方程,可得點(diǎn)O到直線l的距離d,確定d的范圍,進(jìn)而表示出面積,即可求出△OAB的面積的取值范圍.
解答: 解:(Ⅰ)∵圓C1:x2+y2=5與拋物線C2:x2=2py(p>0)在第一象限內(nèi)的交點(diǎn)為R(2,m),
∴4+m2=5,
∵m>0,
∴m=1,
(2,1)代入x2=2py,可得p=2,
∴拋物線C2的方程為x2=4y;
(Ⅱ)設(shè)P(x0,
1
4
x02
)(0<x0<2),則
由y=
1
4
x2,可得y′=
1
2
x
,
∴直線l的斜率k=
1
2
x0
,
∴直線l的方程為y-
1
4
x02
=
1
2
x0
(x-x0),即2x0x-4y-x02=0,
∵點(diǎn)O到直線l的距離為d=
1
2
1
1
x02
+
4
x04
,
∵f(x)=
1
2
1
1
x02
+
4
x04
在(0,2)上遞增,
∴0<d<
2
2

∵S△OAB=
1
2
|AB|d=
5-d2
•d=
-(d2-
5
2
)2+
25
4

∴0<S△OAB
3
2
點(diǎn)評:本題考查拋物線方程,考查拋物線的切線方程,考查三角形面積的計(jì)算,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A,∠B,∠C所對的邊分別為a,b,c,若a2+c2-b2=
2
ac,則∠B為( 。
A、60°B、45°或135°
C、135°D、45°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意數(shù)列A:a1,a2,a3,…,定義△A為數(shù)列a2-a1,a3-a2,a4-a3,…,如果數(shù)列A使得△(△A)的所有項(xiàng)都是1,且a11=a101=0,試求a1的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=|x-a|+3x-2a-1,g(x)=3x-|x+3a-1|.
(Ⅰ)若a=-1,求不等式f(x)≤6的解集;
(Ⅱ)若對任意函數(shù)x,不等式f(x)≥g(x)恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知平行四邊形ABCD中,AD=2,CD=
2
,∠ABC=45°,AE⊥BC,垂足為E,沿直線AE將△BAE翻拆成△B1AE,使得平面B1AE⊥平面AECD,連接B1D,P是線段B1D上的點(diǎn),且滿足
B1P
B1D

(Ⅰ)λ=
1
2
時(shí),求證CP⊥平面AB1D;
(Ⅱ)若平面AB1E與平面PAC所成的二面角的余弦值為
11
11
,求AP與平面AB1E所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,求函數(shù)的最大值和最小正周期T,并求當(dāng)x取何值時(shí)達(dá)到最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某水庫進(jìn)入汛期后的水位升高量h(n)(單位:標(biāo)高)與進(jìn)入訊期的天數(shù)n的關(guān)系是h(n)=20
5m2+6n
,汛期共計(jì)40天,剛進(jìn)入汛期時(shí)水庫水位為220(標(biāo)高),而水庫警戒線水位是400(標(biāo)高),水庫共有水閘15個(gè),每開啟一個(gè)泄洪,一天可使水庫的水位下降4(標(biāo)高).
(1)若不開啟水閘泄洪,這個(gè)汛期水庫是否有危險(xiǎn)?若有危險(xiǎn),將發(fā)生在第幾天?
(2)若要保證水庫安全,則在進(jìn)入訊期的第一天起每天開啟p個(gè)水閘泄洪,求p的最小值.
(參考數(shù)據(jù):2.272≈5.15,2.312≈5.34)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,兩座建筑物AB,CD的底部在同一個(gè)水平面上,且均與水平面垂直,他們的高度分別是12m和20m,從建筑物AB的頂部A看建筑物CD的視角∠CAD=45°.
(Ⅰ)求BC的長度;
(Ⅱ)在線段AB上取一點(diǎn)P,從點(diǎn)P看建筑物CD的視角為∠CPD,問點(diǎn)P在何處時(shí),∠CPD最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知-2≤x≤-1,2≤y≤3,求x-y的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案