已知函數(shù)f(x)=2
3
sinxcosx+2cos2x-1,求函數(shù)的最大值和最小正周期T,并求當(dāng)x取何值時(shí)達(dá)到最大值.
考點(diǎn):三角函數(shù)的最值,兩角和與差的正弦函數(shù),二倍角的余弦
專題:三角函數(shù)的求值
分析:利用三角恒等變換化簡函數(shù)的解析式為f(x)=2sin(2x+
π
6
),由此可得函數(shù)的最小正周期和最大值,以及x取何值時(shí)達(dá)到最大值.
解答: 解:∵函數(shù)f(x)=2
3
sinxcosx+2cos2x-1=
3
sin2x+cos2x=2sin(2x+
π
6
),
∴函數(shù)的最小正周期為
2
=π,
當(dāng)2x+
π
6
=2kπ+
π
2
,k∈z時(shí),
即x=kπ+
π
6
,k∈z時(shí),函數(shù)f(x)取得最大值為2.
點(diǎn)評(píng):本題主要考查三角函數(shù)的恒等變換及化簡求值,三角函數(shù)的周期性和最值,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若如圖是計(jì)算2+3+4+5+6的值的程序,則在①、②處填寫的語句可以是(  )
A、①i>1;②i=i-1
B、①i>1;②i=i+1
C、①i>=1;②i=i+1
D、①i>=1;②i=i-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足:|z+1|+|z-1|=2
2

(Ⅰ)求復(fù)數(shù)z對(duì)應(yīng)的動(dòng)點(diǎn)在相應(yīng)的平面直角坐標(biāo)系中形成的曲線C的標(biāo)準(zhǔn)方程;
(Ⅱ)F1(-1,0),F(xiàn)2(1,0),過點(diǎn)F1的直線l與曲線C交于M,N兩點(diǎn),且|
F2M
+
F2N
|=
2
26
3
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4cosxsin(x+
π
6
)-1.
(1)求f(x)的最小正周期;
(2)求f(x)在區(qū)間[-
π
6
,
π
4
]上的最大值和最小值以及相應(yīng)的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)圓C1:x2+y2=5與拋物線C2:x2=2py(p>0)在第一象限內(nèi)的交點(diǎn)為R(2,m).
(Ⅰ)求m的值及拋物線C2的方程;
(Ⅱ)若P在拋物線C2在兩點(diǎn)O,R之間的部分運(yùn)動(dòng),其中O為坐標(biāo)原點(diǎn),直線l過點(diǎn)P且與拋物線C2只有一個(gè)公共點(diǎn),l與圓C1相交于兩點(diǎn)A,B,求△OAB的面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
=(1,1),
b
=(1,-1),將向量
c
=(2,3)表示成x
a
+y
b
的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某地區(qū)交通執(zhí)法部門從某日上午9時(shí)開始對(duì)經(jīng)過當(dāng)?shù)氐?00輛超速車輛的速度進(jìn)行測(cè)量并分組,并根據(jù)測(cè)得的數(shù)據(jù)制作了頻率分布表如下,若以頻率作為事件發(fā)生的概率.
組號(hào)超速分組頻數(shù)頻率
頻率
組距
1[0,20%)1760.08 z
2[20%,40%)120.060.30
3[40%,60%)6y0.15
4[60%,80%)40.020.10
5[80%,100%]x0.010.05
(Ⅰ)求x,y,z的值,并估計(jì)該地區(qū)的超速車輛中超速不低于20%的頻率;
(Ⅱ)若在第2,3,4,5組用分層抽樣的方法隨機(jī)抽取12名司機(jī)做回訪調(diào)查,并在這12名司機(jī)中任意選3人,求這3人中超速在[20%,80%)之間的人數(shù)的數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,a、b、c分別是角A、B、C的對(duì)邊,sin
A
2
=
5
5
,b2+c2-a2=6.
(Ⅰ)求△ABC的面積;
(Ⅱ)若sinA=sinBsinC,求△ABC的外接圓半徑.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)
e1
、
e2
是不共線的向量,且
a
=
e1
-
e2
,
b
=
e1
+2
e2

(1)證明:
a
、
b
可以作為一組基底;
(2)以
a
b
為基底,求向量的
c
=
3e
-
e2
的分解式.

查看答案和解析>>

同步練習(xí)冊(cè)答案