設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線(xiàn)x=-t(0<t<1把y=f(x))的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.
【答案】分析:(1)根據(jù)導(dǎo)函數(shù)的解析式設(shè)出原函數(shù)的解析式,根據(jù)有兩個(gè)相等的實(shí)根可得答案.
(2)根據(jù)定積分的定義可得答案.
(3)由題意可得,化簡(jiǎn)得2(t-1)3=-1,由此求得t的值.
解答:解:(1)∵f′(x)=2x+2   設(shè)f(x)=x2+2x+c,
根據(jù)f(x)=0有兩等根,得△=4-4c=0解得c=1,即f(x)=x2+2x+1;
(2)S===
(3)由題意可得
即 
=,∴2t3-6t2+6t-1=0,
即2(t-1)3=-1,∴t=1-
點(diǎn)評(píng):本題主要考查用待定系數(shù)法求函數(shù)的解析式,導(dǎo)數(shù)的運(yùn)算,定積分的應(yīng)用,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成封閉圖形的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等實(shí)根,且f′(x)=2x+2,則y=f(x)的表達(dá)式是
x2+2x+1
x2+2x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)求y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積;
(3)若直線(xiàn)x=-t(0<t<1)把y=f(x)的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),方程f(x)=0有兩個(gè)相等的實(shí)根,且f′(x)=2x+2.
(1)求y=f(x)的表達(dá)式;
(2)若直線(xiàn)x=-t(0<t<1把y=f(x))的圖象與兩坐標(biāo)軸所圍成圖形的面積二等分,求t的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)y=f(x)是二次函數(shù),f(0)=0且f′(x)=2x+2,則y=f(x)的表達(dá)式是:f(x)=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案