【題目】已知函數(shù)的圖象經(jīng)過點(diǎn)(1,1),

(1)求函數(shù)的解析式;

(2)判斷函數(shù)在(0,+)上的單調(diào)性并用定義證明;

(3)求在區(qū)間上的值域

【答案】(1)(2)函數(shù)在(0,+)上為減函數(shù)(3)

【解析】

試題分析:(1)將點(diǎn)的坐標(biāo)代入函數(shù)式可得到關(guān)于的關(guān)系式,解方程可求得其值,從而確定函數(shù)解析式(2)判斷函數(shù)單調(diào)性,首先假設(shè),在此基礎(chǔ)上判斷的大小關(guān)系,從而確定單調(diào)性;(3)由函數(shù)的單調(diào)性可確定函數(shù)在上的最大值和最小值,從而求得值域

試題解析:1 f(x)的圖象過A、B,則,解得

……4分

2)證明:設(shè)任意x1,x20+),且x1<x2

.

x1,x20+),得x1x2>0,x1x2+2>0

x1<x2,得

,即

函數(shù)在(0,+)上為減函數(shù).

(3)函數(shù)在(0,+)上為減函數(shù)

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知極坐標(biāo)系的極點(diǎn)在直角坐標(biāo)系的原點(diǎn)處,極軸與軸非負(fù)半軸合,直線的參數(shù)方程為:

為參數(shù),曲線的極坐標(biāo)方程為:.

(1)寫出曲線直角坐標(biāo)方程直線普通程;

(2)設(shè)直線與曲線相交于兩點(diǎn),求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)點(diǎn)在圓上,且在第一象限,過的切線交橢圓于兩點(diǎn),問:的周長是否為定值?若是,求出定值;若不是。說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè),.

(1)令,求的單調(diào)區(qū)間;

(2)已知處取得極大值.求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)fx=xln x

1求函數(shù)fx的極值點(diǎn);

2設(shè)函數(shù)gx=fx-ax-1,其中a∈R,求函數(shù)gx在區(qū)間[1,e]上的最小值.(其中e為自然對數(shù)的底數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從遂寧市中、小學(xué)生中抽取部分學(xué)生,進(jìn)行肺活量調(diào)查.經(jīng)了解,我市小學(xué)、初中、高中三個(gè)學(xué)段學(xué)生的肺活量有較大差異,而同一學(xué)段男女生的肺活量差異不大.在下面的抽樣方法中,最合理的抽樣方法是

A. 簡單的隨機(jī)抽樣 B. 按性別分層抽樣

C. 按學(xué)段分層抽樣 D. 系統(tǒng)抽樣

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有6個(gè)紅球和5個(gè)白球的口袋中任取4個(gè)球,那么下列是互斥而不對立的事件是( )

A. 至少一個(gè)紅球與都是紅球

B. 至少一個(gè)紅球與至少一個(gè)白球

C. 至少一個(gè)紅球與都是白球

D. 恰有一個(gè)紅球與恰有兩個(gè)紅球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在區(qū)間上,若函數(shù)為增函數(shù),而函數(shù)為減函數(shù),則稱函數(shù)為區(qū)間上的弱增函數(shù).則下列函數(shù)中,在區(qū)間上不是弱增函數(shù)的為(

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】直線l1l2,在l1上取3個(gè)點(diǎn),在l2上取2個(gè)點(diǎn),由這5個(gè)點(diǎn)能確定平面的個(gè)數(shù)為 (  )

A. 5 B. 4 C. 9 D. 1

查看答案和解析>>

同步練習(xí)冊答案