【題目】設(shè)△ABC的內(nèi)角A,B,C所對(duì)邊分別為a,b,c.向量 =(a, b), =(sinB,﹣cosA),且 ⊥ .
(1)求A的大。
(2)若| |= ,求cosC的值.
【答案】
(1)解:∵ ⊥ ,
∴ =asinB﹣ bcosA=0,
由正弦定理知,
sinAsinB﹣ sinBcosA=0;
又sinB≠0,
∴tanA= ;
∵A∈(0,π),
∴A=
(2)解:∵| |= = ,
∴sin2B+ = ,
解得sin2B= ;
由B∈(0,π),
∴sinB= ;
當(dāng)B為銳角時(shí),cosB= = ,
cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=﹣ × + × = ;
當(dāng)B為鈍角時(shí),cosB=﹣ ,
cosC=﹣cos(A+B)=﹣cosAcosB+sinAsinB=﹣ ×(﹣ )+ × = ;
綜上,cosC的值為 或
【解析】(1)利用x1x2+y1y2=0將用坐標(biāo)表示,根據(jù)正弦定理可知a=2RsinA,b=2RsinB將邊轉(zhuǎn)化為角;(2)根據(jù)=將用坐標(biāo)表示可求出sinB,然后利用兩角和的余弦即可求解.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用數(shù)量積判斷兩個(gè)平面向量的垂直關(guān)系的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握若平面的法向量為,平面的法向量為,要證,只需證,即證;即:兩平面垂直兩平面的法向量垂直.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在[﹣2,2]上的奇函數(shù),當(dāng)x∈(0,2]時(shí),f(x)=2x﹣1,函數(shù)g(x)=x2﹣2x+m.如果對(duì)于x1∈[﹣2,2],x2∈[﹣2,2],使得g(x2)=f(x1),則實(shí)數(shù)m的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知點(diǎn)P是圓O:x2+y2=4上的動(dòng)點(diǎn),點(diǎn)A(4,0),若直線y=kx+1上總存在點(diǎn)Q,使點(diǎn)Q恰是線段AP的中點(diǎn),則實(shí)數(shù)k的取值范圍為 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)f(x)滿足f(3﹣x)=f(3+x),又f(x)是[0,3]上的增函數(shù),且f(a)≥f(0),那么實(shí)數(shù)a的取值范圍是 .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知a>0,且a≠1,函數(shù)f(x)=ax﹣1,g(x)=﹣x2+xlna.
(1)若a>1,證明函數(shù)h(x)=f(x)﹣g(x)在區(qū)間(0,+∞)上是單調(diào)增函數(shù);
(2)求函數(shù)h(x)=f(x)﹣g(x)在區(qū)間[﹣1,1]上的最大值;
(3)若函數(shù)F(x)的圖象過(guò)原點(diǎn),且F′(x)=g(x),當(dāng)a>e 時(shí),函數(shù)F(x)過(guò)點(diǎn)A(1,m)的切線至少有2條,求實(shí)數(shù)m的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,AB=AC,△ABC的外接圓⊙O的弦AD的延長(zhǎng)線交BC的延長(zhǎng)線于點(diǎn)E.
求證:△ABD∽△AEB.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知f(x)是定義在R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x3+x2 .
(1)求f(x)在R上的解析式;
(2)當(dāng)x∈[m,n](0<m<n)時(shí),若f(x)的值域?yàn)閇3m2+2m﹣1,3n2+2n﹣1],求實(shí)數(shù)m,n的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓 經(jīng)過(guò)點(diǎn) ,離心率為 , 為坐標(biāo)原點(diǎn).
(I)求橢圓 的方程.
(II)若點(diǎn) 為橢圓 上一動(dòng)點(diǎn),點(diǎn) 與點(diǎn) 的垂直平分線l交 軸于點(diǎn) ,求 的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且sinA+ cosA=2.
(Ⅰ)求角A的大;
(Ⅱ)現(xiàn)給出三個(gè)條件:①a=2;②B=45°;③c= b.試從中選出兩個(gè)可以確△ABC的條件,寫出你的選擇,并以此為依據(jù)求△ABC的面積.(只寫出一個(gè)方案即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com