【題目】海關(guān)對同時從,,三個不同地區(qū)進口的某種商品進行抽樣檢測,從各地區(qū)進口此種商品的數(shù)量(單位:件)如下表所示.工作人員用分層抽樣的方法從這些商品中共抽取6件樣品進行檢測.
地區(qū) | |||
數(shù)量 | 50 | 150 | 100 |
(1)求這6件樣品中來自,,各地區(qū)商品的數(shù)量;
(2)若在這6件樣品中隨機抽取2件送往甲機構(gòu)進行進一步檢測,求這2件商品來自相同地區(qū)的概率.
【答案】(1),,三個地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)這2件商品來自相同地區(qū)的概率為.
【解析】
試題分析:(1)求出抽樣比,即可得到這6件樣品中來自,,各地區(qū)商品的數(shù)量;(2)這是一個古典概型,在這6件樣品中隨機抽取2件共有個不同的基本事件,這2件商品可能都來自地區(qū)或地區(qū),中包含種不同的基本事件,得到概率
試題解析:(1)因為樣本容量與總體中的個體數(shù)的比是,所以樣本中包含三個地區(qū)的個體數(shù)量分別是,,.
所以,,三個地區(qū)的商品被選取的件數(shù)分別為1,3,2.
(2)在這6件樣品中隨機抽取2件共有個不同的基本事件,且這些事件是等可能發(fā)生的,
記“這2件商品來自相同地區(qū)”為事件,則這2件商品可能都來自地區(qū)或地區(qū),
則中包含種不同的基本事件,
故,即這2件商品來自相同地區(qū)的概率為.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國是世界上嚴(yán)重缺水的國家之一,城市缺水問題較為突出.某市政府為了鼓勵居民節(jié)約用水,計劃調(diào)整居民生活用水收費方案,擬確定一個合理的月用水量標(biāo)準(zhǔn)(噸),一位居民的月用水量不超過的部分按平價收費,超出的部分按議價收費.為了了解居民用水情況,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照,…,分成9組,制成了如圖所示的頻率分布直方圖.
(1)求直方圖中的值;
(2)若該市有110萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),請說明理由;
(3)估計居民月均用水量的中位數(shù)(精確到0.01)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】將圓的一組等分點分別涂上紅色或藍色,從任意一點開始,按逆時針方向依次記錄()個點的顏色,稱為該圓的一個“階色序”,當(dāng)且僅當(dāng)兩個階色序?qū)?yīng)位置上的顏色至少有一個不相同時,稱為不同的階色序.若某國的任意兩個“階色序”均不相同,則稱該圓為“階魅力圓”.“3階魅力圓”中最多可有的等分點個數(shù)為( )
A.4 B.6 C.8 D.10
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),其中常數(shù).
(1)當(dāng),求函數(shù)的單調(diào)遞增區(qū)間;
(2)設(shè)定義在上的函數(shù)在點處的切線方程為,若在內(nèi)恒成立,則稱為函數(shù)的“類對稱點”,當(dāng)時,試問是否存在“類對稱點”,若存在,請至少求出一個“類對稱點”的橫坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,棱形的邊長為6, ,.將棱形沿對角線折起,得到三棱錐,點是棱的中點, .
(Ⅰ)求證:∥平面;
(Ⅱ)求三棱錐的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的中心在原點,焦點在軸,焦距為2,且長軸長是短軸長的倍.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè),過橢圓左焦點的直線交于、兩點,若對滿足條件的任意直線,不等式()恒成立,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲乙兩人下棋比賽,規(guī)定誰比對方先多勝兩局誰就獲勝,比賽立即結(jié)束;若比賽進行完6局還沒有分出勝負(fù)則判第一局獲勝者為最終獲勝且結(jié)束比賽.比賽過程中,每局比賽甲獲勝的概率為,乙獲勝的概率為,每局比賽相互獨立.求:(1)比賽兩局就結(jié)束且甲獲勝的概率;(2)恰好比賽四局結(jié)束的概率;(3)在整個比賽過程中,甲獲勝的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知方程x2+y2-2(m+3)x+2(1-4m2)y+16m4+9=0表示一個圓.
(1) 求實數(shù)m的取值范圍;
(2) 求該圓半徑r的取值范圍;
(3) 求該圓心的縱坐標(biāo)的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,我海監(jiān)船在島海域例行維權(quán)巡航,某時刻航行至處,此時測得其東北方向與它相距海里的處有一外國船只,且島位于海監(jiān)船正東海里處。
(Ⅰ)求此時該外國船只與島的距離;
(Ⅱ)觀測中發(fā)現(xiàn),此外國船只正以每小時海里的速度沿正南方向航行。為了將該船攔截在離島海里處,不讓其進入島海里內(nèi)的海域,試確定海監(jiān)船的航向,并求其速度的最小值.
(參考數(shù)據(jù): , )
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com