分析 先求出x1的范圍,再將x1f(x2)轉化為x的函數(shù),利用函數(shù)的單調(diào)性確定x1f(x2)的取值范圍.
解答 解:∵存在x1,x2∈R,當0≤x1<4≤x2≤6時,f(x1)=f(x2),
∴l(xiāng)og2(4-2)+2=3,log2(6-2)+2=4,
∴3≤2x1-4<4,
∴$\frac{7}{2}$≤x1<4
∵f(x1)=2x1-4,f(x1)=f(x2)
∴x1f(x2)=x1f(x1)=x1(2x1-4)=2x12-4x1=2(x1-1)2-4,
∴y=(x1-2)2-4,在[$\frac{7}{2}$,4)為增函數(shù),
∴y∈[$\frac{21}{2}$,16)
故答案為:[$\frac{21}{2}$,16)
點評 本題考查分段函數(shù),考查二次函數(shù)的性質,正確轉化是解題的關鍵所在,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | y=($\sqrt{x}$)2 | B. | f(x)=$\frac{{x}^{2}}{x}$ | C. | y=|x| | D. | y=$\root{3}{{x}^{3}}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -$\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | B. | $\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | C. | $\frac{1}{4}$$\overrightarrow{a}$-$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ | D. | -$\frac{1}{4}$$\overrightarrow{a}$+$\frac{1}{4}$$\overrightarrow$+$\frac{1}{4}$$\overrightarrow{c}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com