【題目】某醫(yī)院治療白血病有甲、乙兩套方案,現(xiàn)就70名患者治療后復(fù)發(fā)的情況進(jìn)行了統(tǒng)計(jì),得到其等高條形圖如圖所示(其中采用甲、乙兩種治療方案的患者人數(shù)之比為

(1)補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),并判斷是否有把握認(rèn)為甲乙兩套治療方案對(duì)患者白血病復(fù)發(fā)有影響;

復(fù)發(fā)

未復(fù)發(fā)

總計(jì)

甲方案

乙方案

2

總計(jì)

70

(2)為改進(jìn)“甲方案”,按分層抽樣組成了由5名患者構(gòu)成的樣本,求隨機(jī)抽取2名患者恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的概率.

附:

0.05

0.01

0.005

0.001

3.841

6.635

7.879

10.828

,

【答案】(1)見解析;(2)

【解析】

1)根據(jù)條件確定對(duì)應(yīng)項(xiàng)數(shù)據(jù),填入表格得列聯(lián)表,根據(jù)卡方公式得值,對(duì)照參考數(shù)據(jù)確定把握率,(2)先根據(jù)分層抽樣確定樣本數(shù),再根據(jù)枚舉法確定樣本總數(shù)以及所求事件包含的樣本數(shù),最后根據(jù)古典概型概率公式得結(jié)果.

(1)根據(jù)題意知,70名患者中采用甲種治療方案的患者人數(shù)為50人,采用乙種治療方案的患者人數(shù)為20人,

補(bǔ)充完整列聯(lián)表中的數(shù)據(jù),如圖所示;

復(fù)發(fā)

未復(fù)發(fā)

總計(jì)

甲方案

20

30

50

乙方案

2

18

20

總計(jì)

22

48

70

計(jì)算觀測(cè)值得,,

所以沒(méi)有的把握認(rèn)為甲、乙兩套治療方案對(duì)患者白血病復(fù)發(fā)有影響;

(2)在甲種治療方案中按分層抽樣抽取5名患者,復(fù)發(fā)的抽取2人,即為、;

未復(fù)發(fā)的抽取3人,記為、,從這5人中隨機(jī)抽取2人,基本事件為:

、、、、、、共10種,

其中2人恰好是復(fù)發(fā)患者和未復(fù)發(fā)患者各1名的基本事件為:

、、、共6種,

則所求的概率為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)求的極值;

2)證明:時(shí),

3)若函數(shù)有且只有三個(gè)不同的零點(diǎn),分別記為,設(shè)的最大值是,證明:

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

(1)若上單調(diào)遞減,求的取值范圍;

(2)若處取得極值,判斷當(dāng)時(shí),存在幾條切線與直線平行,請(qǐng)說(shuō)明理由;

(3)若有兩個(gè)極值點(diǎn),求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖已知橢圓,是長(zhǎng)軸的一個(gè)端點(diǎn),弦過(guò)橢圓的中心,且,.

(Ⅰ)求橢圓的方程:

(Ⅱ)設(shè)為橢圓上異于且不重合的兩點(diǎn),且的平分線總是垂直于軸,是否存在實(shí)數(shù),使得,若存在,請(qǐng)求出的最大值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某調(diào)查機(jī)構(gòu)對(duì)全國(guó)互聯(lián)網(wǎng)行業(yè)進(jìn)行調(diào)查統(tǒng)計(jì),得到整個(gè)互聯(lián)網(wǎng)行業(yè)從業(yè)者年齡分布餅狀圖、后從事互聯(lián)網(wǎng)行業(yè)者崗位分布條形圖,則下列結(jié)論中不一定正確的是( )

A. 互聯(lián)網(wǎng)行業(yè)從業(yè)人員中后占一半以上

B. 互聯(lián)網(wǎng)行業(yè)中從事技術(shù)崗位的人數(shù)超過(guò)總?cè)藬?shù)的

C. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比前多

D. 互聯(lián)網(wǎng)行業(yè)中從事運(yùn)營(yíng)崗位的人數(shù)后比后多

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓)的離心率為,連接橢圓四個(gè)頂點(diǎn)得到的菱形的面積為4.

1)求橢圓的方程;

2)設(shè)是橢圓的右頂點(diǎn),過(guò)點(diǎn)作兩條互相垂直的直線,分別與橢圓交于,兩點(diǎn),求證:直線過(guò)定點(diǎn);

3)(只理科做)過(guò)點(diǎn)作兩條互相垂直的直線,與圓交于,兩點(diǎn),交橢圓于另一點(diǎn),求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】甲、乙兩超市同時(shí)開業(yè),第一年的全年銷售額為a萬(wàn)元,由于經(jīng)營(yíng)方式不同,甲超市前n年的總銷售額為 (n2n+2)萬(wàn)元,乙超市第n年的銷售額比前一年銷售額多a萬(wàn)元.

(1)求甲、乙兩超市第n年銷售額的表達(dá)式;

(2)若其中某一超市的年銷售額不足另一超市的年銷售額的50%,則該超市將被另一超市收購(gòu),判斷哪一超市有可能被收購(gòu)?如果有這種情況,將會(huì)出現(xiàn)在第幾年?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某市統(tǒng)計(jì)局就某地居民的月收入調(diào)查了10000人,并根據(jù)所得數(shù)據(jù)畫出樣本的頻率分布直方圖(每個(gè)分組包括左端點(diǎn),不包括右端點(diǎn),如第一組表示收入在.

1)求居民收入在的頻率;

2)根據(jù)頻率分布直方圖算出樣本數(shù)據(jù)的中位數(shù);

3)為了分析居民的收入與年齡、職業(yè)等方面的關(guān)系,必須按月收入再?gòu)倪@10000人中按分層抽樣方法抽出100人作進(jìn)一步分析,則月收入在的這段應(yīng)抽取多少人?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某城市通過(guò)抽樣調(diào)查的方法獲得了100戶居民某月用水量(單位:t)的頻率分布直方圖:

(Ⅰ)求這100戶居民該月用水量的平均值;

(Ⅱ)從該月用水量在兩個(gè)區(qū)間的用戶中,用分層抽樣的方法邀請(qǐng)5戶的戶主共5人參加水價(jià)調(diào)整方案聽證會(huì),現(xiàn)從這5人中隨機(jī)選取2人在會(huì)上進(jìn)行陳述發(fā)言,求選取的2人均來(lái)自用水量低于2.5t的用戶的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案