分析 (Ⅰ)由函數(shù)的圖象可求出A,由周期求出ω,由五點(diǎn)法作圖求出φ的值,從而求得函數(shù)的解析式.
(Ⅱ)根據(jù)函數(shù)y=Asin(ωx+φ)的圖象變換規(guī)律,可得結(jié)論.
解答 解:(1)由圖象知A=1.
f(x)的最小正周期$T=4×(\frac{5π}{12}-\frac{π}{6})=π$,
故$ω=\frac{2π}{T}=2$,
將點(diǎn)$(\frac{π}{6},1)$代入f(x)的解析式得$sin(\frac{π}{3}+φ)=1$,
又$|φ|<\frac{π}{2}$,
∴$φ=\frac{π}{6}$.
故函數(shù)f(x)的解析式為$f(x)=sin(2x+\frac{π}{6})$,
(2)變換過(guò)程如下:y=sinx圖象上的$\frac{所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的\frac{1}{2}倍}{縱坐標(biāo)不變}$y=sin2x的圖象,
再把y=sin2x的圖象$\stackrel{向左平移\frac{π}{12}個(gè)單位}{→}$$y=sin(2x+\frac{π}{6})$的圖象,
另解:y=sinx$\stackrel{圖象向左平移\frac{π}{6}個(gè)單位}{→}$$y=sin(x+\frac{π}{6})$的圖象.
再把$y=sin(x+\frac{π}{6})$的圖象$\frac{所有點(diǎn)的橫坐標(biāo)縮小為原來(lái)的\frac{1}{2}倍}{縱坐標(biāo)不變}$$y=sin(2x+\frac{π}{6})$的圖象
點(diǎn)評(píng) 本題主要考查利用y=Asin(ωx+φ)的圖象特征,由函數(shù)y=Asin(ωx+φ)的部分圖象求解析式,y=Asin(ωx+φ)的圖象變換規(guī)律,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $-\frac{1}{2}$ | B. | $-\frac{8}{3}$ | C. | $\frac{1}{2}$ | D. | $\frac{8}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 相離 | B. | 相切 | C. | 相交且不過(guò)圓心 | D. | 相交且過(guò)圓心 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | f(x+1)是偶函數(shù) | B. | f(x+1)是非奇非偶函數(shù) | ||
C. | f(x)=f(x+2) | D. | f(x+3)是奇函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{12}$ |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com