分析 (1)由AC⊥BD,AA1⊥BD即可得出BD⊥平面ACC1A1;
(2)由BD⊥平面ACC1A1得出BD⊥A1C1,故異面直線A1C1與BD所成的角為90°;
(3)直接代入棱錐的體積公式計算.
解答 證明:(1)∵AB=AD,AB⊥AD,
∴四邊形ABCD是正方形,∴BD⊥AC.
∵AA1⊥平面ABCD,BD?平面ABCD,
∴AA1⊥BD,
又AC?平面ACC1A1,AA1?平面ACC1A1,
∴BD⊥平面ACC1A1.
解:(2)BD⊥平面ACC1A1,A1C1?平面ACC1A1,
∴BD⊥A1C1,
∴異面直線A1C1與BD所成的角為90°.
(3)V${\;}_{{D}_{1}-ABD}$=$\frac{1}{3}{S}_{△ABD}•D{D}_{1}$=$\frac{1}{3}×\frac{1}{2}×1×1×\sqrt{2}$=$\frac{\sqrt{2}}{6}$.
點評 本題考查了線面垂直的判定與性質(zhì),棱錐的體積計算,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | “若$\overrightarrow a•\overrightarrow b=0$,則$\overrightarrow a⊥\overrightarrow b$”的否命題是“若$\overrightarrow a•\overrightarrow b≠0$,則$\overrightarrow a⊥\overrightarrow b$” | |
B. | 命題“對?x∈R,恒有x2+1>0”的否定是“?x0∈R,使得$x_0^2+1≤0$” | |
C. | ?m∈R,使函數(shù)f(x)=x2+mx(x∈R)是奇函數(shù) | |
D. | 設p,q是簡單命題,若p∨q是真命題,則p∧q也是真命題 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{2}+\frac{1}{2}$ | B. | $\sqrt{2}-\frac{1}{2}$ | C. | $\frac{5}{4}$ | D. | $\frac{3}{4}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com