某單位設(shè)計(jì)一個(gè)展覽沙盤,現(xiàn)欲在沙盤平面內(nèi),鋪設(shè)一個(gè)對(duì)角線在L上的四邊形電氣線路,如圖所示.為充分利用現(xiàn)有材料,邊BC,CD用一根5米長(zhǎng)的材料彎折而成,邊BA,AD用一根9米長(zhǎng)的材料彎折而成,使A+C=180°,且AB=BC.設(shè)AB=x米,cos A=f(x).
(1)求f(x)的解析式,并指出x的取值范圍;
(2)求y=
sinA
AB
的最大值,并指出相應(yīng)的x值.
考點(diǎn):解三角形的實(shí)際應(yīng)用
專題:應(yīng)用題,解三角形
分析:(1)利用余弦定理,建立方程,解得cos A=
2
x
,即可求f(x)的解析式,并指出x的取值范圍;
(2)表示出y=
sinA
AB
,利用基本不等式求出最大值,并指出相應(yīng)的x值.
解答: 解:(1)在△ABD中,由余弦定理得BD2=AB2+AD2-2AB•AD•cosA.
同理,在△CBD中,BD2=CB2+CD2-2CB•CD•cosC.
因?yàn)椤螦和∠C互補(bǔ),
所以AB2+AD2-2AB•AD•cosA=CB2+CD2-2CB•CD•cosC=CB2+CD2+2CB•CD•cosA.…(4分)
即x2+(9-x)2-2x(9-x)cosA=x2+(5-x)2+2x(5-xcosA.
解得cosA=
2
x
,
即f(x)=
2
x
,其中x∈(2,5)…(7分)
(2)由(1)知,sinA=
1-
4
x2
,∴y=
1
x
1-
4
x2
x∈(2,5)…(9分)
y=
1
2
2
x
1-
4
x2
1
2
4
x2
+(1-
4
x2
)
2
=
1
4
,…(11分)
當(dāng)
4
x2
=1-
4
x2
x2=8⇒x=2
2
時(shí),ymax=
1
4
…(13分)
點(diǎn)評(píng):本題考查余弦定理,考查基本不等式的運(yùn)用,正確運(yùn)用余弦定理是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知公差不為0的等差數(shù)列{an}的前n項(xiàng)和為Sn,且滿足S5=3a5-2,a1,a2,a5成等比數(shù)列.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=
1
anan+1
(n∈N*),Tn是數(shù)列{bn}的前n項(xiàng)和,若an+1≥λTn,對(duì)任意正整數(shù)n都成立,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=
1
4x+7
的定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中真命題為
 

(1)命題“?x>0,x2-x≤0”的否定是“?x≤0,x2-x>0”
(2)在三角形ABC中,A>B,則sinA>sinB.
(3)已知數(shù)列{an},則“an,an+1,an+2成等比數(shù)列”是“an+12=an•an+2”的充要條件
(4)已知函數(shù)f(x)=lgx+
1
lgx
,則函數(shù)f(x)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=(x2-2x)lnx+ax2+2.當(dāng)a=-1時(shí),求函數(shù)f(x)在(1,f(1))處的切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,若邊長(zhǎng)為4和3與邊長(zhǎng)為4和2的兩個(gè)矩形所在平面互相垂直,則cosα:cosβ=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1,F(xiàn)2是橢圓
x2
2
+
y2
4
=1的兩焦點(diǎn),P是橢圓在第一象限弧上一點(diǎn),且滿足
PF1
PF2
=1過(guò)點(diǎn)P作傾斜角互補(bǔ)的兩條直線PA、PB分別交橢圓于A,B兩點(diǎn),
(1)求點(diǎn)P坐標(biāo);
(2)求證:直線AB的斜率為定值;
(3)求△PAB面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在四棱錐P-ABCD中,平面PAD⊥平面ABCD,AB∥DC,PD=PA,已知AB=2DC=10,BD=
4
3
AD=8.
(1)設(shè)M是PC上的一點(diǎn),求證:平面MBD⊥平面PAD;
(2)當(dāng)三角形PAD為正三角形時(shí),點(diǎn)M在線段PC(不含線段端點(diǎn))上的什么位置時(shí),二面角P-AD-M的大小為
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

臺(tái)風(fēng)中心從A地以每小時(shí)20公里的速度向東北方向移動(dòng),離臺(tái)風(fēng)中心30公里內(nèi)地區(qū)為危險(xiǎn)區(qū),城市B在A的正東40公里處,則B城市處于危險(xiǎn)區(qū)的時(shí)間為
 
小時(shí).

查看答案和解析>>

同步練習(xí)冊(cè)答案