已知橢圓=1(a>b>0)的離心率e=,連結(jié)橢圓的四個頂點(diǎn)得到的菱形的面積為4.

(1)求橢圓的方程;

(2)設(shè)直線l與橢圓相交于不同的兩點(diǎn)A,B.已知點(diǎn)A的坐標(biāo)為(-a,0).若|AB|=,求直線l的傾斜角.

 

(1)+y2=1(2)

【解析】(1)由e=,解得3a2=4c2.再由c2=a2-b2,解得a=2b.

由題意可知×2a×2b=4,即ab=2.解方程組

所以橢圓的方程為+y2=1.

(2)由(1)可知點(diǎn)A(-2,0),設(shè)點(diǎn)B的坐標(biāo)為(x1,y1),直線l的斜率為k,則直線l的方程為y=k(x+2).于是A、B兩點(diǎn)的坐標(biāo)滿足方程組

消去y并整理,得(1+4k2)x2+16k2x+(16k2-4)=0,

由-2x1=,得x1=,從而y1=,

故|AB|=.

由|AB|=,得.整理得32k4-9k2-23=0,

即(k2-1)(32k2+23)=0,解得k=±1.所以直線l的傾斜角為

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第十一章第4課時練習(xí)卷(解析版) 題型:填空題

某班級有男生12人、女生10人,現(xiàn)選舉4名學(xué)生分別擔(dān)任班長、副班長、團(tuán)支部書記和體育班委,則至少兩名男生當(dāng)選的概率為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第9課時練習(xí)卷(解析版) 題型:解答題

已知拋物線的頂點(diǎn)在原點(diǎn),對稱軸為坐標(biāo)軸,焦點(diǎn)在直線2x-y-4=0上,求拋物線的標(biāo)準(zhǔn)方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:解答題

雙曲線C與橢圓=1有相同的焦點(diǎn),直線y=x為C的一條漸近線.求雙曲線C的方程.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第8課時練習(xí)卷(解析版) 題型:填空題

雙曲線的焦點(diǎn)在x軸上,虛軸長為12,離心率為,則雙曲線的標(biāo)準(zhǔn)方程為______________________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

如圖,在平面直角坐標(biāo)系xOy中,已知F1,F(xiàn)2分別是橢圓E:=1(a>b>0)的左、右焦點(diǎn),A,B分別是橢圓E的左、右頂點(diǎn),且+5=0.

(1)求橢圓E的離心率; (2)已知點(diǎn)D(1,0)為線段OF2的中點(diǎn),M為橢圓E上的動點(diǎn)(異于點(diǎn)A、B),連結(jié)MF1并延長交橢圓E于點(diǎn)N,連結(jié)MD、ND并分別延長交橢圓E于點(diǎn)P、Q,連結(jié)PQ,設(shè)直線MN、PQ的斜率存在且分別為k1、k2,試問是否存在常數(shù)λ,使得k1+λk2=0恒成立?若存在,求出λ的值;若不存在,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第7課時練習(xí)卷(解析版) 題型:解答題

設(shè)A、B分別為橢圓=1(a>b>0)的左、右頂點(diǎn),橢圓長半軸的長等于焦距,且直線x=4是它的右準(zhǔn)線.

(1)求橢圓的方程;

(2)設(shè)P為橢圓右準(zhǔn)線上不同于點(diǎn)(4,0)的任意一點(diǎn),若直線BP與橢圓相交于兩點(diǎn)B、N,求證:∠NAP為銳角.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第6課時練習(xí)卷(解析版) 題型:解答題

若橢圓=1的焦距為2,求橢圓上的一點(diǎn)到兩個焦點(diǎn)的距離之和.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)總復(fù)習(xí)考點(diǎn)引領(lǐng)+技巧點(diǎn)撥第九章第4課時練習(xí)卷(解析版) 題型:填空題

若直線l:ax+by+4=0(a>0,b>0)始終平分圓C:x2+y2+8x+2y+1=0,則ab的最大值為________.

 

查看答案和解析>>

同步練習(xí)冊答案