【題目】已知函數(shù)f(x)=x﹣
(1)討論f(x)的單調(diào)性.
(2)若f(x)在區(qū)間(1,2)上單調(diào)遞減,求實(shí)數(shù)a的取值范圍.

【答案】
(1)解:由題意得,函數(shù)f(x)的定義域是(0,+∞),

且f′(x)=1+ =

設(shè)g(x)=x2﹣ax+2,二次方程g(x)=0的判別式△=a2﹣8,

①當(dāng)△=a2﹣8<0,即0<a<2 時(shí),對(duì)一切x>0都有f′(x)>0,

此時(shí)f(x)在(0,+∞)上是增函數(shù);

②當(dāng)△=a2﹣8=0,即a=2 時(shí),僅對(duì)x= 有f′(x)=0,

對(duì)其余的x>0,都有f′(x)>0,此時(shí)f(x)在(0,+∞)上也是增函數(shù).

③當(dāng)△=a2﹣8>0,即a>2 時(shí),

g(x)=x2﹣ax+2=0有兩個(gè)不同的實(shí)根 , ,

由f′(x)>0得,0<x< 或x> ,

由f'(x)<0得, <x< ,

此時(shí)f(x)在(0, ),( ,+∞)上單調(diào)遞增,

在( , )是上單調(diào)遞減


(2)解:解:f′(x)=1+ =

依題意f'(x)≤0(等零的點(diǎn)是孤立的),即x2﹣ax+2≤0在(1,2)上恒成立,

令g(x)=x2﹣ax+2,則有 ,解得a≥3,

故實(shí)數(shù)a的取值范圍為[3,+∞)


【解析】(1)求f(x)的定義域和導(dǎo)數(shù)fˊ(x)= ,設(shè)g(x)=x2﹣ax+2,因?yàn)樵诤瘮?shù)式中含字母系數(shù),需要根據(jù)△的符號(hào)進(jìn)行分類討論,分別在函數(shù)的定義域內(nèi)解不式g(x)>0和g(x)<0確定的f(x)單調(diào)區(qū)間;(2)由條件確定f'(x)≤0,再轉(zhuǎn)化為x2﹣ax+2≤0在(1,2)上恒成立,由二次函數(shù)的圖象列出不等式求解,避免了分類討論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性的相關(guān)知識(shí),掌握一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負(fù)有如下關(guān)系: 在某個(gè)區(qū)間內(nèi),(1)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個(gè)區(qū)間單調(diào)遞減.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓C經(jīng)過(guò)點(diǎn)A(1,1)和B(4,﹣2),且圓心C在直線l:x+y+1=0上.
(Ⅰ)求圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)設(shè)M,N為圓C上兩點(diǎn),且M,N關(guān)于直線l對(duì)稱,若以MN為直徑的圓經(jīng)過(guò)原點(diǎn)O,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內(nèi)有兩個(gè)零點(diǎn),求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設(shè) x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當(dāng) a≤e+1 時(shí),M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在長(zhǎng)方體ABCD﹣A1B1C1D1中,E是CD上一點(diǎn),AB=AD=3,AA1=2,CE=1,P是AA1上一點(diǎn),且DP∥平面AEB1 , F是棱DD1與平面BEP的交點(diǎn),則DF的長(zhǎng)為(
A.1
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)國(guó)家環(huán)保部新修訂的《環(huán)境空氣質(zhì)量標(biāo)準(zhǔn)》規(guī)定:居民區(qū)PM2.5的年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.我市環(huán)保局隨機(jī)抽取了一居民區(qū)2016年20天PM2.5的24小時(shí)平均濃度(單位:微克/立方米)的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如表

組別

PM2.5濃度
(微克/立方米)

頻數(shù)(天)

頻率

第一組

(0,25]

3

0.15

第二組

(25,50]

12

0.6

第三組

(50,75]

3

0.15

第四組

(75,100]

2

0.1


(1)從樣本中PM2.5的24小時(shí)平均濃度超過(guò)50微克/立方米的天數(shù)中,隨機(jī)抽取2天,求恰好有一天PM2.5的24小時(shí)平均濃度超過(guò)75微克/立方米的概率;
(2)將這20天的測(cè)量結(jié)果按上表中分組方法繪制成的樣本頻率分布直方圖如圖. ①求圖中a的值;
②求樣本平均數(shù),并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境質(zhì)量是否需要改善?并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某廠生產(chǎn)甲、乙兩種產(chǎn)品每噸所需的煤、電和產(chǎn)值如下表所示.

用煤(噸)

用電(千瓦)

產(chǎn)值(萬(wàn)元)

甲產(chǎn)品

3

50

12

乙產(chǎn)品

7

20

8

但國(guó)家每天分配給該廠的煤、電有限,每天供煤至多47噸,供電至多300千瓦,問(wèn)該廠如何安排生產(chǎn),使得該廠日產(chǎn)值最大?最大日產(chǎn)值為多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某企業(yè)投資1千萬(wàn)元用于一個(gè)高科技項(xiàng)目,每年可獲利25%.由于企業(yè)間競(jìng)爭(zhēng)激烈,每年底需要從利潤(rùn)中取出資金200萬(wàn)元進(jìn)行科研、技術(shù)改造與廣告投入,方能保持原有的利潤(rùn)增長(zhǎng)率.經(jīng)過(guò)多少年后,該項(xiàng)目的資金可以達(dá)到4倍的目標(biāo)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校高中生共有2700人,其中高一年級(jí)900人,高二年級(jí)1200人,高三年級(jí)600人,現(xiàn)采取分層抽樣法抽取容量為135的樣本,那么高一,高二,高三各年級(jí)抽取的人數(shù)分別為(
A.45,75,15
B.45,45,45
C.30,90,15
D.45,60,30

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=ex﹣mx,
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)g(x)=f(x)﹣lnx+x2存在兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案