【題目】已知f ( x)= x2 , g ( x)=a ln x(a>0).
(Ⅰ)求函數(shù) F ( x)=f(x)g(x)的極值
(Ⅱ)若函數(shù) G( x)=f(x)﹣g(x)+(a﹣1)在區(qū)間 ( ,e) 內有兩個零點,求的取值范圍;
(Ⅲ)函數(shù) h( x)=g ( x )﹣x+ ,設 x1∈(0,1),x2∈(1,+∞),若 h( x 2)﹣h( x 1)存在最大值,記為 M (a),則當 a≤e+1 時,M (a) 是否存在最大值?若存在,求出其最大值;若不存在,請說明理由.
【答案】解:(Ⅰ) , ∴ ,
由F′(x)>0得 ,
由F′(x)<0,得
∴F(x)在 上單調遞減,在 上單調遞增,
∴ ,F(xiàn)(x)無極大值.
(Ⅱ)
∴
又 ,易得G(x)在 上單調遞減,在[1,e)上單調遞增,
要使函數(shù)G(x)在 內有兩個零點,
需 ,即 ,
∴ ,
∴ ,即a的取值范圍是 .
(Ⅲ)若0<a≤2,∵ 在(0,+∞)上滿足h′(x)≤0,
∴h(x)在(0,+∞)上單調遞減,∴h(x2)﹣h(x1)<0.
∴h(x2)﹣h(x1)不存在最大值,則a>2,
∴方程x2﹣ax+1=0有兩個不相等的正實數(shù)根,
令其為m,n,且不妨設0<m<1<n,則 ,
h(x)在(0,m)上單調遞減,在(m,n)上調遞增,在(n,+∞)上單調遞減,
對x1∈(0,1),有h(x1)≥h(m);對x2∈(1,+∞),有h(x2)≤h(n),
∴[h(x2)﹣h(x1)]max=h(n)﹣h(m).
∴ = .
將 , 代入上式,消去a,m,
得: ,
∵ ,∴ ,n>1.
據(jù) 在x∈(1,+∞)上單調遞增,得n∈(1,e],
設 ,x∈(1,e],
,x∈(1,e],
∴φ′(x)>0,即φ(x)在(1,e]上單調遞增,
∴ ,
∴M(a)存在最大值為
【解析】(Ⅰ)求出函數(shù)的導數(shù),解關于導函數(shù)的不等式,求出函數(shù)的單調區(qū)間即可;(Ⅱ)求出函數(shù)的導數(shù),根據(jù)函數(shù)的單調性得到關于a的不等式組,解出即可;(Ⅲ)求出函數(shù)的導數(shù),得到方程x2﹣ax+1=0有兩個不相等的正實數(shù)根,令其為m,n,根據(jù)函數(shù)的單調性判斷即可.
【考點精析】認真審題,首先需要了解函數(shù)的極值與導數(shù)(求函數(shù)的極值的方法是:(1)如果在附近的左側,右側,那么是極大值(2)如果在附近的左側,右側,那么是極小值),還要掌握函數(shù)的最大(小)值與導數(shù)(求函數(shù)在上的最大值與最小值的步驟:(1)求函數(shù)在內的極值;(2)將函數(shù)的各極值與端點處的函數(shù)值,比較,其中最大的是一個最大值,最小的是最小值)的相關知識才是答題的關鍵.
科目:高中數(shù)學 來源: 題型:
【題目】4月23日是世界讀書日,惠州市某中學在此期間開展了一系列的讀書教育活動。為了解本校學生課外閱讀情況,學校隨機抽取了100名學生對其課外閱讀時間進行調查。下面是根據(jù)調查結果繪制的學生日均課外閱讀時間(單位:分鐘)的頻率分布直方圖,且將日均課外閱讀時間不低于60分鐘的學生稱為“讀書迷”,低于60分鐘的學生稱為“非讀書迷”.
(Ⅰ)根據(jù)已知條件完成下面2×2列聯(lián)表,并據(jù)此判斷是否有99%的把握認為“讀書迷”與性別有關?
(Ⅱ)將頻率視為概率,現(xiàn)在從該校大量學生中用隨機抽樣的方法每次抽取1人,共抽取3次,記被抽取的3人中“讀書迷”的人數(shù)為,若每次抽取的結果是相互獨立的,求的分布列、數(shù)學期望和方差.
附:
0.100 | 0.050 | 0.025 | 0.010 | 0.001 | |
2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓C: (a>b>0 ) 經過點 P(1, ),離心率 e=
(Ⅰ)求橢圓C的標準方程.
(Ⅱ)設過點E(0,﹣2 ) 的直線l 與C相交于P,Q兩點,求△OPQ 面積的最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的圖象過原點,且在處取得極值,直線與曲線在原點處的切線互相垂直.
(Ⅰ)求函數(shù)的解析式;
(Ⅱ)若對任意實數(shù)的,恒有成立,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】《數(shù)學九章》中對已知三角形三邊長求三角形的面積的求法填補了我國傳統(tǒng)數(shù)學的一個空白,與著名的海倫公式完全等價,由此可以看出我國古代已具有很高的數(shù)學水平,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上.以小斜冪乘大斜冪減上,余四約之,為實.一為從隔,開平方得積.”若把以上這段文字寫成公式,即S= .現(xiàn)有周長為2 + 的△ABC滿足sinA:sinB:sinC=( ﹣1): :( +1),試用以上給出的公式求得△ABC的面積為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x﹣ .
(1)討論f(x)的單調性.
(2)若f(x)在區(qū)間(1,2)上單調遞減,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】為了得到函數(shù)y=sin(2x﹣ )的圖象,可以將函數(shù)y=sin2x的圖象( )
A.向右平移 個單位
B.向右平移 個單位
C.向左平移 個單位
D.向左平移 個單位
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com