對于函數(shù)y=ex,曲線y=ex在與坐標軸交點處的切線方程為y=x+1,由于曲線 y=ex在切線y=x+1的上方,故有不等式ex≥x+1.類比上述推理:對于函數(shù)y=lnx(x>0),有不等式( )
A.lnx≥x+1(x>0)
B.lnx≤1-x(x>0)
C.lnx≥x-1(x>0)
D.lnx≤x-1(x>0)
【答案】分析:求出導數(shù)和函數(shù)圖象與軸的交點坐標,再求出在交點處的切線斜率,代入點斜式方程求出切線方程,再與函數(shù)的圖象位置比較,得到不等式.
解答:解:由題意得,y′=lnx=,且y=lnx圖象與x軸的交點是(1,0),
則在(1,0)處的切線的斜率是1,
∴在(1,0)處的切線的方程是y=x-1,
∵切線在y=lnx圖象上方(x>0),
∴x-1≥lnx(x>0),
故選D.
點評:本題考查了導數(shù)的幾何意義,即在某點處的切線斜率是該點處的導數(shù)值,以及對數(shù)函數(shù)圖象的特點等.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

對于函數(shù)y=ex,曲線y=ex在與坐標軸交點處的切線方程為y=x+1,由于曲線 y=ex在切線y=x+1的上方,故有不等式ex≥x+1.類比上述推理:對于函數(shù)y=lnx(x>0),有不等式( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•許昌三模)已知函數(shù)f(x)=ex,曲線y=f(x)在點(x0,y0)處的切線方程為y=g(x).
(Ⅰ)證明:對?x∈R,f(x)≥g(x);
(Ⅱ)當x≥0時,f(x)≥1+
ax1+x
恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011屆河北省衡水中學高三第三次模擬考試理數(shù)(A卷) 題型:解答題

(本小題滿分12分)
已知函數(shù)
(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調區(qū)間;[來源:學&科&網(wǎng)Z&X&X&K]
(Ⅱ)若對于任意成立,試求a的取值范圍;
(Ⅲ)記g(x)=f(x)+x-b(b∈R).當a=1時,函數(shù)g(x)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年河北省高三第三次模擬考試理數(shù)B卷 題型:解答題

(本小題滿分12分)

已知函數(shù)

(Ⅰ)若曲線y=f(x)在點P(1,f(1))處的切線與直線y=x+2垂直,求函數(shù)y=f(x)的單調區(qū)間;

(Ⅱ)若對于任意成立,試求a的取值范圍;

(Ⅲ)記g(x)=f(x)+x-b(b∈R).當a=1時,函數(shù)g(x)在區(qū)間上有兩個零點,求實數(shù)b的取值范圍。

 

 

查看答案和解析>>

同步練習冊答案