不等式x2-3x≤0的解集是(  )
A、{x|0<x≤3}
B、{x|0≤x<3}
C、{x|0≤x≤3}
D、{x|x≤0或x≥3}
考點(diǎn):一元二次不等式的解法
專題:不等式的解法及應(yīng)用
分析:直接解一元二次不等式,求得它的解集.
解答: 解:不等式x2-3x≤0,即 x(x-3)≤0,求得 0≤x≤3,
故選:C.
點(diǎn)評(píng):本題主要考查一元二次不等式的解法,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x-
1
x
)=x2+
1
x2
+1,則f(x)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平行四邊形ABCD中E,F(xiàn)分別邊BC,CD的中點(diǎn),且
AE
=
a
,
AF
=
b
,則
BD
=( 。
A、
1
2
b
-
a
B、
1
2
a
-
b
C、2(
a
-
b
D、2(
b
-
a

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知|
OA
|=1,|
OB
|=
3
OA
OB
=0,點(diǎn)C在∠AOB內(nèi),且∠AOC=60°,設(shè)
OC
=m
OA
+n
OB
(m,n∈R),則
m
n
=( 。
A、
1
4
B、
1
3
C、
1
2
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={2,3,4},B={3,4,5},則A∩B=(  )
A、{3}
B、{3,4}
C、{2,3,4}
D、{2,3,4,5}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列命題中,真命題是(  )
A、存在x0∈R,sin2
x0
2
+cos2
x0
2
=
1
2
B、任意x∈(0,π),sinx>cosx
C、任意x∈(0,+∞),x2+1>x
D、存在x0∈R,x02+x0=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足Sn+an=2n+1(n≥1,且n∈N*
(1)求出a1,a2,a3的值;
(2)由(1)猜想出數(shù)列{an}的通項(xiàng)公式an,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,AB=AC,∠CAB=90°,且
AD
AC
(0<λ<
1
2
),過(guò)點(diǎn)D作直線DE∥AB交BC于E,將△DEC沿DE折起,使C點(diǎn)在平面ADEB內(nèi)的射影與點(diǎn)A重合(如圖),設(shè)M是BC的中點(diǎn).
(Ⅰ)求證:BC⊥AD;
(Ⅱ)當(dāng)λ=
1
3
時(shí),求直線BC與平面EAM所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖F1、F2為橢圓C:
x2
a2
+
y2
b2
=1的左、右焦點(diǎn),D、E是橢圓的兩個(gè)頂點(diǎn),橢圓的離心率e=
3
2
,SDEF2=1-
3
2
.若點(diǎn)M(x0,y0)在橢圓C上,則點(diǎn)N(
x0
a
y0
b
)稱為點(diǎn)M的一個(gè)“橢點(diǎn)”,直線l與橢圓交于A、B兩點(diǎn),A、B兩點(diǎn)的“橢點(diǎn)”分別為P、Q.
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)問(wèn)是否存在過(guò)左焦點(diǎn)F1,的直線l,使得以PQ為直徑的圓經(jīng)過(guò)坐標(biāo)原點(diǎn)?若存在,求出該直線的方程;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案