函數(shù)f(x)定義如下表,數(shù)列{xn}滿足x1=2,且對(duì)任意的自然數(shù)均有xn+1=f(xn),則x2013等于( 。
x12345
f(x)51342
A、1B、2C、4D、5
考點(diǎn):數(shù)列的函數(shù)特性,函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:利用函數(shù)f(x)定義,計(jì)算可得數(shù)列{xn}是:2,1,5,2,1,…是一個(gè)周期性變化的數(shù)列,周期為:3,從而得出答案.
解答: 解:由題意,∵x1=2,且對(duì)任意自然數(shù)均有xn+1=f(xn),
∴x2=f(x1)=f(2)=1,x2=1,
x3=f(x2)=f(1)=5,x3=5,
x4=f(x3)=f(5)=2,x4=2,
x5=f(x4)=f(2)=1,x5=1,
故數(shù)列{xn}滿足:2,1,5,2,1,5,2,1,5…是一個(gè)周期性變化的數(shù)列,周期為:3.
∴x2013=x3×671=x3=5.
故選:D.
點(diǎn)評(píng):本小題主要考查函數(shù)的表示法、函數(shù)的周期性的應(yīng)用、考查數(shù)列的周期性,考查運(yùn)算求解能力與轉(zhuǎn)化思想,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,若-a2013<a1<-a2014,則必定有( 。
A、S2013>0,且S2014<0
B、S2013<0,且S2014>0
C、a2013>0,且a2014<0
D、a2013<0,且a2014>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某幾何體的正視圖是一個(gè)面積為2π的半圓,側(cè)視圖是直角三角形,俯視圖是正三角形,那么這個(gè)幾何體的表面積為( 。
A、6π
B、12π+4
3
C、6π+4
3
D、4(π+
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖是由所輸入x的值計(jì)算y值的一個(gè)算法程序,若x依次取數(shù)列{
n2+4
n
}(n∈N*,n≤2014)的項(xiàng),則所得y值中的最小值為( 。
A、25B、17C、20D、26

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某電視臺(tái)在娛樂(lè)頻道節(jié)目播放中,每小時(shí)播放廣告10分鐘,那么隨機(jī)打開(kāi)電視機(jī)觀看這個(gè)頻道看到廣告的概率為( 。
A、
1
2
B、
1
3
C、
1
4
D、
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義R在上的函數(shù)f(x)滿足f(-x)=f(x),f(x-1)=f(x+3),且x∈(-1,0)時(shí),f(x)=2x+
1
5
,則f(log220)=( 。
A、-
4
5
B、1
C、
4
5
D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

把邊長(zhǎng)為2的正方形ABCD沿對(duì)角線BD折起,連接AC,得到三棱錐C-ABD,其正視圖、俯視圖均為全等的等腰直角三角形(如圖所示),則其側(cè)視圖的面積為( 。
A、
1
2
B、
3
2
C、1
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

△ABC各角的對(duì)應(yīng)邊分別為a,b,c,滿足
b
a+c
+
c
a+b
≥1,則角A的范圍是( 。
A、(0,
π
3
]
B、(0,
π
6
]
C、[
π
3
,π)
D、[
π
6
,π)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知cos(α-β)cosβ-sin(α-β)sinβ=-
3
5
,α∈(
π
2
,π),求sin(2α+
π
3
)的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案