【題目】如圖,梯形與矩形所在平面相互垂直, , , , .
(Ⅰ)求證: 平面;
(Ⅱ)求四棱錐的側(cè)面積.
科目:高中數(shù)學 來源: 題型:
【題目】已知直線l過點P(3,4)
(1)它在y軸上的截距是在x軸上截距的2倍,求直線l的方程.
(2)若直線l與軸,軸的正半軸分別交于點,求的面積的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某種產(chǎn)品的廣告費用支出與銷售額之間有如下的對應數(shù)據(jù):
2 | 4 | 5 | 6 | 8 | |
30 | 40 | 60 | 50 | 70 |
(1)畫出散點圖;
(2)求回歸直線方程;
(3)據(jù)此估計廣告費用為10時,銷售收入的值.
參考公式及數(shù)據(jù):
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=.
(1)若函數(shù)f(x)的圖像中相鄰兩條對稱軸間的距離不小于,求的取值范圍;
(2)若函數(shù)f(x)的最小正周期為π,且當x∈時,f(x)的最大值是,求函數(shù)f(x)的最小值,并說明如何由函數(shù)y=sin2x的圖象變換得到函數(shù)y=f(x)的圖象.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某研究機構(gòu)對高三學生的記憶力x和判斷力y進行統(tǒng)計分析,得下表數(shù)據(jù):
x | 6 | 8 | 10 | 12 |
y | 2 | 3 | 5 | 6 |
(1)請在圖中畫出上表數(shù)據(jù)的散點圖;
(2)請根據(jù)上表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程;
(3)試根據(jù)(2)求出的線性回歸方程,預測記憶力為9的同學的判斷力.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】選修4-4:坐標系與參數(shù)方程
在平面直角坐標系中,曲線的參數(shù)方程為(為參數(shù),且),以為極點, 軸的正半軸為極軸,建立極坐標系,直線 的極坐標方程為.
(1)若曲線與只有一個公共點,求的值;
(2), 為曲線上的兩點,且,求△的面積最大值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某公司做了用戶對其產(chǎn)品滿意度的問卷調(diào)查,隨機抽取了20名用戶的評分,得到圖3所示莖葉圖,對不低于75的評分,認為用戶對產(chǎn)品滿意,否則,認為不滿意,
(Ⅰ)根據(jù)以上資料完成下面的2×2列聯(lián)表,若據(jù)此數(shù)據(jù)算得,則在犯錯的概率不超過5%的前提下,你是否認為“滿意與否”與“性別”有關(guān)?
附:
(Ⅱ) 估計用戶對該公司的產(chǎn)品“滿意”的概率;
(Ⅲ) 該公司為對客戶做進一步的調(diào)查,從上述對其產(chǎn)品滿意的用戶中再隨機選取2人,求這兩人都是男用戶或都是女用戶的概率.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的兩焦點在軸上,且短軸的兩個頂點與其中一個焦點的連線構(gòu)成斜邊為的等腰直角三角形.
(1)求橢圓的方程;
(2)動直線交橢圓于兩點,試問:在坐標平面上是否存在一個定點,使得以線段為直徑的圓恒過點?若存在,求出點的坐標;若不存在,請說明理由。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com