精英家教網 > 高中數學 > 題目詳情

【題目】已知數列中,

(1)求證:數列是等比數列

(2)求數列的通項公式

(3)設,若對任意,有恒成立,求實數的取值范圍.

【答案】(1)證明見解析;(2);(3).

【解析】分析:第一問將變形為,利用等比數列的定義即可證明;第二問根據第一問的結論可以得出,之后應用累加法求得一定不要忘記對首項的驗證;第三問對相應的項進行裂項,之后求和,再利用數列的單調性,不等式的解法即可得出結果.

詳解:(1)證明: ,

, ,

數列是首項、公比均為2的等比數列.

(2)是等比數列,首項為2,通項,

,當時, 符合上式,數列的通項公式為 .

(3)解: ,

,又因為{Sn}單調遞增,所以Sn的最小值為S1=,成立,

由已知,有,解得,所以的取值范圍為

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】乒乓球比賽規(guī)則規(guī)定:一局比賽,雙方比分在10平前,一方連續(xù)發(fā)球2次后,對方再連續(xù)發(fā)球2次,依次輪換.每次發(fā)球,勝方得1分,負方得0分.設在甲、乙的比賽中,每次發(fā)球,發(fā)球方得1分的概率為0.6,各次發(fā)球的勝負結果相互獨立.甲、乙的一局比賽中,甲先發(fā)球.
(1)求開始第4次發(fā)球時,甲、乙的比分為1比2的概率;
(2) 表示開始第4次發(fā)球時乙的得分,求 的期望.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某農科所對冬季晝夜溫差大小與某反季節(jié)大豆新品種發(fā)芽多少之間的關系進行分析研究,他們分別記錄了日至日的每天晝夜溫差與實驗室每天每顆種子中的發(fā)芽數,得到如下資料:

日期

12月1日

12月2日

12月3日

12月4日

12月5日

溫差/攝氏度

發(fā)芽數/顆

該農科所確定的研究方案是:先從這組數據中選取組,用剩下的組數據求線性回歸方程,再用被選取的組數據進行檢驗.

(1)求選取的組數據恰好是不相鄰天的數據的概率;

(2)若選取的是日與日的兩組數據,請根據日至日的數據,求出關于的線性回歸方程,由線性回歸方程得到的估計數據與所選取的檢驗數據的誤差均不超過顆,則認為得到的線性回歸方程是可靠的,試問(2)中所得試的線性回歸方程是否可靠?

附:

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(2015·湖南)設,且,證明
(1)
(2)不可能同時成立

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】(本小題滿分12分)在△ABC中,角A,B,C的對邊分別為ab,c,Ca5,△ABC的面積為10.

1)求bc的值;

2)求cosB)的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】某校為了紀念“中國紅軍長征90周年”,增強學生對“長征精神”的深刻理解,在全校組織了一次有關“長征”的知識競賽,經過初賽、復賽,甲、乙兩個代表隊(每隊3人)進入了決賽,規(guī)定每人回答一個問題,答對為本隊贏得20分,答錯得0分.假設甲隊中每人答對的概率均為 ,乙隊中3人答對的概率分別為 , , ,且各人回答正確與否相互之間沒有影響,用 表示乙隊的總得分.
(1)求 的分布列和均值;
(2)求甲、乙兩隊總得分之和等于40分且甲隊獲勝的概率.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】執(zhí)行如圖程序框圖,如果輸入的a=4,b=6,那么輸出的n=( 。

A.3
B.4
C.5
D.6

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知數據是上海普通職工n個人的年收入,設n個數據的中位數為x,平均數為y,方差為z,如果再加上世界首富的年收入 , 則這n+1個數據中,下列說法正確的是 ( )
A.年收入平均數大大增加,中位數一定變大,方差可能不變
B.年收入平均數大大增加,中位數可能不變,方差變大
C.年收入平均數大大增加,中位數可能不變,方差也不變
D.年收入平均數可能不變,中位數可能不變,方差可能不變

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖, , 分別是 的中點,將 沿直線 折起,使二面角 的大小為 ,則 與平面 所成角的正切值是( )

A.
B.
C.
D.

查看答案和解析>>

同步練習冊答案