【題目】已知數(shù)據(jù)是上海普通職工n個人的年收入,設(shè)n個數(shù)據(jù)的中位數(shù)為x,平均數(shù)為y,方差為z,如果再加上世界首富的年收入 , 則這n+1個數(shù)據(jù)中,下列說法正確的是 ( )
A.年收入平均數(shù)大大增加,中位數(shù)一定變大,方差可能不變
B.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差變大
C.年收入平均數(shù)大大增加,中位數(shù)可能不變,方差也不變
D.年收入平均數(shù)可能不變,中位數(shù)可能不變,方差可能不變

【答案】B
【解析】平均數(shù)反映了數(shù)據(jù)的集中趨勢所處的水平,它受樣本中每個數(shù)據(jù)的影響,“越離群”的數(shù)據(jù),對平均數(shù)的影響也大,而中位數(shù)不受少數(shù)幾個極端值的影響,方差反映數(shù)據(jù)集中與分散程度,數(shù)據(jù)的集中程度也會受到的影響,而更加分散,則方差越大,根據(jù)平均數(shù)、中位數(shù)、方差的意義,易得答案B.
【考點精析】解答此題的關(guān)鍵在于理解用樣本的數(shù)字特征估計總體的數(shù)字特征的相關(guān)知識,掌握用樣本估計總體時,如果抽樣的方法比較合理,那么樣本可以反映總體的信息,但從樣本得到的信息會有偏差.在隨機抽樣中,這種偏差是不可避免的.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】從裝有個紅球和個黒球的口袋內(nèi)任取個球,那么互斥而不對立的兩個事件是( )
A.至少有一個黒球與都是黒球
B.至少有一個黑球與都是紅球
C.至少有一個黒球與至少有個紅球
D.恰有個黒球與恰有個黒球

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列函數(shù)中,在區(qū)間(0,+∞)上單調(diào)遞增的是(
A.y=
B.y=1﹣x
C.y=x2﹣x
D.y=1﹣x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(Ⅰ)若有唯一解,求實數(shù)的值;

(Ⅱ)證明:當時,

(附:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】假設(shè)關(guān)于某設(shè)備使用年限x(年)和所支出的維修費用y(萬元)有如下統(tǒng)計資料:

2

3

4

5

6

y

2.2

3.8

5.5

6.5

7.0

若由資料知,y對x呈線性相關(guān)關(guān)系,試求:
(Ⅰ)請畫出上表數(shù)據(jù)的散點圖;
(Ⅱ)請根據(jù)上表提供的數(shù)據(jù),求出y關(guān)于x的線性回歸方程=bx+;
(Ⅲ)估計使用年限為10年時,維修費用約是多少?
(參考數(shù)據(jù):2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖是甲、乙兩名籃球運動員2012年賽季每場比賽得分的莖葉圖,則甲、乙兩人比賽得分的中位數(shù)之和是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】集合P={x|a+1≤x≤2a+1},Q={x|﹣2≤x≤5}
(1)若a=3,求集合(RP)∩Q;
(2)若PQ,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐的底面是平行四邊形,側(cè)面是邊長為2的正三角形, , .

(Ⅰ)求證:平面平面;

(Ⅱ)設(shè)是棱上的點,當平面時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=log4(4x+1)+kx(k∈R)是偶函數(shù)
(1)求k的值;
(2)設(shè)g(x)=log4(a2x a),若函數(shù)f(x)與g(x)的圖象有且只有一個公共點,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案