【題目】設(shè)函數(shù),,其中,.
)若函數(shù)處有極小值,求,的值;
)若,設(shè),求證:當(dāng)時,
)若,,對于給定,,,其中,,,若.求的取值范圍.

【答案】(1), .(2)見解析(3)

【解析】試題分析:(Ⅰ)先求導(dǎo)函數(shù),再由可得結(jié)果;(Ⅱ)利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,求出 的最大值,在利用絕對值不等式結(jié)論證明;(Ⅲ)討論三種情況,可得不合題意,只有符合題意.

試題解析:Ⅰ) ,由已知可得

解得.

當(dāng)時, 的極小值點.

當(dāng)時, 的極大值點,故舍去.

所以, .

(Ⅱ)

因為,所以函數(shù)的對稱軸位于區(qū)間之外,

于是, 上的最大值在兩端點處取得,

.

于是 ,

.

(Ⅲ)

所以,當(dāng)時, ,所以上單調(diào)遞減.

①當(dāng)時, ,

,

因為上單調(diào)遞減,所以,

.

因此, 成立, 符合題意.

②當(dāng)時, ,

,

于是 .

所以 不符合題意.

時,

,

.

所以 , 不符合題意.

綜上, .

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一個社會調(diào)查機(jī)構(gòu)就某地居民的月收入調(diào)查了10 000人,并根據(jù)所得數(shù)據(jù)畫了樣本的頻率分布直方圖(如圖).為了分析居民的收入與年齡、學(xué)歷、職業(yè)等方面的關(guān)系,要從這10 000人中再用分層抽樣方法抽出80人作進(jìn)一步調(diào)查,則在[1 500,2 000)(元)月收入段應(yīng)抽出( )人.

A.15
B.16
C.17
D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】國內(nèi),某知名連接店分店開張營業(yè)期間,在固定的時間段內(nèi)消費(fèi)達(dá)到一定標(biāo)準(zhǔn)的顧客可進(jìn)行一次抽獎活動,隨著抽獎的有效展開,參與抽獎活動的人數(shù)越來越多,該分店經(jīng)理對開業(yè)前7天參加抽獎活動的人數(shù)進(jìn)行統(tǒng)計, 表示開業(yè)第天參加抽獎活動的人數(shù),得到統(tǒng)計表格如下:

經(jīng)過進(jìn)一步的統(tǒng)計分析,發(fā)現(xiàn)具有線性相關(guān)關(guān)系.

(1)如從這7天中隨便機(jī)抽取兩天,求至少有1天參加抽獎人數(shù)超過10天的概率;

(2)根據(jù)上表給出的數(shù)據(jù),用最小二乘法,求出的線性回歸方程,并估計若該活動持續(xù)10天,共有多少名顧客參加抽獎.

參考公式: , , .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球2個.從袋子中不放回地隨機(jī)抽取小球兩個,每次抽取一個球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.

(1)記事件表示“”,求事件的概率;

(2)在區(qū)間內(nèi)任取兩個實數(shù),,求“事件恒成立”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知:以點C(t, )(t∈R,t≠0)為圓心的圓與x軸交于點O,A,與y軸交于點O,B,其中O為原點.
(1)當(dāng)t=2時,求圓C的方程;
(2)求證:△OAB的面積為定值;
(3)設(shè)直線y=﹣2x+4與圓C交于點M,N,若|OM|=|ON|,求圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某造船公司年造船量是20,已知造船x艘的產(chǎn)值函數(shù)為R(x)3 700x45x210x3(單位:萬元)成本函數(shù)為C(x)460x5 000(單位:萬元)

(1)求利潤函數(shù)P(x);(提示:利潤=產(chǎn)值-成本)

(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)(xk)ex

(1)f(x)的單調(diào)區(qū)間;

(2)f(x)在區(qū)間[0,1]上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知二次函數(shù).

(1)任取,記“關(guān)于的方程有一個大于1的根和一個小于1的根”為事件,求發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在△ABC中,內(nèi)角A,B,C所對的邊長分別是a,b,c.
(1)若c=2, ,且△ABC的面積 ,求a,b的值;
(2)若sinC+sin(B﹣A)=sin2A,試判斷△ABC的形狀.

查看答案和解析>>

同步練習(xí)冊答案