【題目】袋子中放有大小和形狀相同的小球若干,其中標(biāo)號為0的小球1個,標(biāo)號為1的小球1個,標(biāo)號為2的小球2個.從袋子中不放回地隨機抽取小球兩個,每次抽取一個球,記第一次取出的小球標(biāo)號為,第二次取出的小球標(biāo)號為.
(1)記事件表示“”,求事件的概率;
(2)在區(qū)間內(nèi)任取兩個實數(shù),,求“事件恒成立”的概率.
【答案】(1) ;(2).
【解析】試題分析:(1)從袋子中不放回地隨機抽取2個球,共有基本事件12個,其中“a+b=2”為事件A的基本事件有4個,故可求概率.(2)記“x2+y2>(a﹣b)2恒成立”為事件B,則事件B等價于“x2+y2>4恒成立,(x,y)可以看成平面中的點,確定全部結(jié)果所構(gòu)成的區(qū)域,事件B構(gòu)成的區(qū)域,利用幾何概型可求得結(jié)論.
(1)兩次不放回抽取小球的所有基本事件為,,,,,,,,,,,,共12個,事件包含的基本事件為,,,,共4個.
所以.
(2)記“恒成立”為事件,
則事件等價于“”.
可以看成平面中的點,
則全部結(jié)果所構(gòu)成的區(qū)域,
而事件所構(gòu)成的區(qū)域,
.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】從“充分不必要條件”“必要不充分條件”“充要條件”“既不充分也不必要條件”中,選出適當(dāng)?shù)囊环N填空:
(1)記集合A={-1,p,2},B={2,3},則“p=3”是“A∩B=B”的__________________;
(2)“a=1”是“函數(shù)f(x)=|2x-a|在區(qū)間上為增函數(shù)”的________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)列{an}中,a1=2,an+1=4an﹣3n+1,n∈N* .
(1)證明數(shù)列{an﹣n}是等比數(shù)列;
(2)求數(shù)列{an}的前n項和Sn;
(3)證明不等式Sn+1≤4Sn , 對任意n∈N*皆成立.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知非零向量 , , , 滿足 =2 ﹣ , =k + ,給出以下結(jié)論:
①若 與 不共線, 與 共線,則k=﹣2;
②若 與 不共線, 與 共線,則k=2;
③存在實數(shù)k,使得 與 不共線, 與 共線;
④不存在實數(shù)k,使得 與 不共線, 與 共線.
其中正確結(jié)論的個數(shù)是( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知.
(Ⅰ)若在是單調(diào)遞增函數(shù),求實數(shù)的取值范圍;
(Ⅱ)令,若函數(shù)有兩個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2+(y﹣1)2=5,直線l:mx﹣y+1﹣m=0,且直線l與圓C交于A、B兩點.
(1)若|AB|= ,求直線l的傾斜角;
(2)若點P(1,1),滿足2 = ,求直線l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù),,其中,.
(Ⅰ)若函數(shù)在處有極小值,求,的值;
(Ⅱ)若,設(shè),求證:當(dāng)時,;
(Ⅲ)若,,對于給定,,,,,其中,,,若.求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的短軸長為,右焦點為,點是橢圓上異于左、右頂點的一點.
(1)求橢圓的方程;
(2)若直線與直線交于點,線段的中點為,證明:點關(guān)于直線的對稱點在直線上.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)銳角△ABC的三內(nèi)角A、B、C所對邊的邊長分別為a、b、c,且 a=1,B=2A,則b的取值范圍為( )
A.( , )
B.(1, )
C.( ,2)
D.(0,2)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com