已知函數(shù)f(x)=
ex-2(x≤0)
lnx(x>0)
,則下列關(guān)于函數(shù)y=f[f(kx)+1]+1(k≠0)的零點(diǎn)個(gè)數(shù)的判斷正確的是(  )
A、當(dāng)k>0時(shí),有3個(gè)零點(diǎn);當(dāng)k<0時(shí),有4個(gè)零點(diǎn)
B、當(dāng)k>0時(shí),有4個(gè)零點(diǎn);當(dāng)k<0時(shí),有3個(gè)零點(diǎn)
C、無(wú)論k為何值,均有3個(gè)零點(diǎn)
D、無(wú)論k為何值,均有4個(gè)零點(diǎn)
考點(diǎn):函數(shù)零點(diǎn)的判定定理
專(zhuān)題:計(jì)算題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)y=f[f(kx)+1]+1(k≠0)的零點(diǎn)個(gè)數(shù)即方程f[f(kx)+1]+1=0的解的個(gè)數(shù),從而解方程可得.
解答: 解:令f[f(kx)+1]+1=0得,
f(kx)+1≤0
ef(kx)+1-2+1=0
f(kx)+1>0
ln[f(kx)+1]+1=0

解得,f(kx)+1=0或f(kx)+1=
1
e
;
由f(kx)+1=0得,
kx≤0
ekx-2+1=0
kx>0
ln(kx)=1
;
即x=0或kx=e;
由f(kx)+1=
1
e
得,
kx≤0
ekx-2+1=
1
e
kx>0
ln(kx)+1=
1
e
;
即ekx=1+
1
e
,(無(wú)解)或kx=e
1
e
-1

綜上所述,x=0或kx=e或kx=e
1
e
-1
;
故無(wú)論k為何值,均有3個(gè)解;
故選C.
點(diǎn)評(píng):本題考查了函數(shù)的零點(diǎn)與方程的根的關(guān)系應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

直線l1:y=ax+3(a≠2),l2:y=2x+b,將圓C:(x+2)2+(y-c)2=4分成長(zhǎng)度相等的四段弧,則a•b•c=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

棱長(zhǎng)為2的正方體被一平面截得的幾何體的三視圖如圖所示,那么被截去的幾何體的體積是( 。
A、
14
3
B、
10
3
C、4
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}的前n項(xiàng)和為Sn,且an=2Sn-3,則{an}的通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,網(wǎng)格紙上小正方形邊長(zhǎng)為1,粗線畫(huà)出的是某幾何體的三視圖,則該幾何體的體積為(  )
A、8B、12C、4D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

長(zhǎng)方體ABCD-A1B1C1D1中,AA1=2,BC=
2
,E為CC1的中點(diǎn).
(Ⅰ)求證:平面A1BE⊥平面B1CD;
(Ⅱ)平面A1BE與底面A1B1C1D1所成的銳二面角的大小為θ,當(dāng)
2
10
5
<AB<2
2
時(shí),求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知拋物線C:y2=2px(p>0)上的點(diǎn)M到直線l:y=x+1的最小距離為
2
4
.點(diǎn)N在直線l上,過(guò)點(diǎn)N作直線與拋物線相切,切點(diǎn)分別為A、B.
(Ⅰ)求拋物線方程;
(Ⅱ)當(dāng)原點(diǎn)O到直線AB的距離最大時(shí),求三角形OAB的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,c=1,b=2,求C的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知數(shù)列{an}滿足8apaq=ap+q(p、q∈N*),且a1=
1
4
,則an=
 

查看答案和解析>>

同步練習(xí)冊(cè)答案