10.將函數(shù)$y=2sin(2x+\frac{π}{6})$的圖象向左平移$\frac{1}{4}$個周期后,所得圖象對應(yīng)的函數(shù)為( 。
A.$y=2sin(2x+\frac{2π}{3})$B.$y=2sin(2x+\frac{5π}{12})$C.$y=2sin(2x-\frac{π}{3})$D.$y=2sin(2x-\frac{π}{12})$

分析 由已知函數(shù)解析式求得函數(shù)周期,再結(jié)合三角函數(shù)的圖象平移得答案.

解答 解:函數(shù)$y=2sin(2x+\frac{π}{6})$的周期T=$\frac{2π}{2}=π$,
將函數(shù)$y=2sin(2x+\frac{π}{6})$的圖象向左平移$\frac{1}{4}$個周期,即向左平移$\frac{π}{4}$個單位,
∴平移后所得圖象對應(yīng)的函數(shù)為y=$2sin[2(x+\frac{π}{4})+\frac{π}{6}]$=$2sin(2x+\frac{2π}{3})$.
故選:A.

點評 本題考查三角函數(shù)的圖象和性質(zhì),考查三角函數(shù)的圖象平移,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=2x3-ax2+1.
(1)當(dāng)a=4時,求函數(shù)f(x)的極大值;
(2)若函數(shù)f(x)在R上有且僅有兩個零點,求實數(shù)a的值;
(3)求證:$\frac{1}{2^3}+\frac{1}{3^3}+\frac{1}{4^3}+…+\frac{1}{n^3}<\frac{1}{3}-\frac{1}{2n+1}({n∈N且n≥2})$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)集合A={x|x<2},B={y|y=2x-1,x∈A},則A∩B=(  )
A.(-∞,3)B.[2,3)C.(-∞,2)D.(-1,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在梯形PDCB中(如圖1),其中CD∥PB,DA⊥PB于點A(點A在P、B兩點之間),CD=2,AB=4,BC=2$\sqrt{2}$.將△PAD沿直線AD折起,使得平面PAD⊥平面ABCD(如圖2),點M在棱PB上,且平面AMC把幾何體P-ABCD分成的兩部分體積比為VPDCMA:VMACB=5:4.
(1)確定點M在棱PB上的位置;
(2)判斷直線PD是否平行于平面AMC,并說明理由;
(3)若在平面PBD內(nèi)存在這樣的一個點G,且滿足AG⊥平面PBD與MG∥平面ABCD同時成立,試問:符合題意的四棱錐P-ABCD是否存在?若存在,請求出此時PA的長度;若不存在,請給出你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}\sqrt{x}+3,x≥0\\ ax+b,x<0\end{array}\right.$滿足條件:對于?x1∈R,且x1≠0,?唯一的x2∈R且x1≠x2,使得f(x1)=f(x2).當(dāng)f(2a)=f(3b)成立時,則實數(shù)a+b=(  )
A.$\frac{{\sqrt{6}}}{2}$B.$-\frac{{\sqrt{6}}}{2}$C.$\frac{{\sqrt{6}}}{2}$+3D.$-\frac{{\sqrt{6}}}{2}$+3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知f(x),g(x)都是定義在R上的函數(shù),g(x)≠0,f(x)g′(x)>f′(x)g(x),f(x)=ax•g(x)(a>0,a≠1),$\frac{f(1)}{g(1)}+\frac{f(-1)}{g(-1)}=\frac{5}{2}$,在有窮數(shù)列$\{\frac{f(n)}{g(n)}\}$(n=1,2…10)中,任意取正整數(shù)k(1≤k≤10),則前k項和大于$\frac{15}{16}$的概率是(  )
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.一個籃球運動員投籃一次得3分的概率為a,得2分的概率為b,不得分的概率為c(a,b,c∈(0,1)),已知他投籃一次得分的數(shù)學(xué)期望為2,則$\frac{2}{a}+\frac{1}{3b}$的最小值為(  )
A.$\frac{32}{3}$B.$\frac{28}{3}$C.$\frac{16}{3}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知某三棱錐的三視圖如圖所示,則該三棱錐外接球的表面積是(  )
A.$\sqrt{6}π$B.C.24πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知數(shù)列{an}的前n項和${S_n}=\frac{{{n^2}+3n}}{4}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)令${b_n}={4^{a_n}}-\frac{1}{{4{a_n}{a_{n+1}}}}$,求數(shù)列{bn}的前n項和Tn

查看答案和解析>>

同步練習(xí)冊答案