如圖,四棱錐PABCD中,底面四邊形ABCD是正方形,側(cè)面PDC是邊長為a的正三角形,且平面PDC⊥平面ABCD,EPC的中點.

(1)求異面直線PADE所成的角的余弦值.

(2)求點D到平面PAB的距離.

答案:
解析:

  解:如圖取DC的中點O,連結(jié)PO,

  ∵△PDC為正三角形,∴PO⊥DC

  又∵面PDC⊥面ABCD

  ∴PO⊥面ABCD

  ∴以O(shè)為坐標(biāo)原點OC、OP所在直線為y軸,z軸建立如圖所示直角坐標(biāo)系,

  則P(0,0,a),A(a,,0),B(a,,0),C(0,,0),D(0,,0).

  (1)∵E為PC的中點,∴E(0,,)

  ∴=(0,aa),=(a,-,-a),

  ·a×(-)+a×(-a)=-a2,

  ||=a,||=a

  cos〈,〉=

  ∴異面直線PADE所成角的余弦值為. 6分

  (2)由(1)知=(a,-,-a),

  =(0,a,0),

  =(0,a,0),

  設(shè)平面PAB的一個法向量為n=(x,y,z),則

  n,n=(0,a,0),

  ∴n·xayaz=0、

  n·ya=0、

  由②得y=0,代入①得xaaz=0

  令x,則z=2,∴n=(,0,2).

  則D到平面PAB的距離d等于
提示:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,PA⊥底面ABCD,AB⊥AD,點E在線段AD上,CE∥AB.
(Ⅰ)求證:CE⊥平面PAD;
(Ⅱ)若PA=AB=1,AD=3,且CD與平面PAD所成的角為45°,求點D到平面PCE的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD的底面ABCD是正方形,AC∩BD=O,PA⊥底面ABCD,OE⊥PC于E.
(1)求證:PC⊥平面BDE;
(2)設(shè)PA=AB=2,求二面角B-PC-D的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PA⊥底面ABCD,且PA=AB=1,AD=
3
,點F是PB中點.
(Ⅰ)若E為BC中點,證明:EF∥平面PAC;
(Ⅱ)若E是BC邊上任一點,證明:PE⊥AF;
(Ⅲ)若BE=
3
3
,求直線PA與平面PDE所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,四棱錐P-ABCD中,底面ABCD為矩形,PD⊥平面ABCD,點E,F(xiàn)分別是AB和PC的中點.
(1)求證:EF∥平面PAD;
(2)若CD=2PD=2AD=2,四棱錐P-ABCD外接球的表面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,四棱錐P-ABCD,PA⊥底面ABCD,AB∥CD,AB⊥AD,AB=AD=
12
CD=2,PA=2,M,E,F(xiàn)分別是PA,PC,PD的中點.
(1)證明:EF∥平面PAB;
(2)證明:PD⊥平面ABEF;
(3)求直線ME與平面ABEF所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案