已知曲線C:為參數(shù)).
(1)將C的參數(shù)方程化為普通方程;
(2)若把C上各點(diǎn)的坐標(biāo)經(jīng)過伸縮變換后得到曲線,求曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值.
的普通方程為.⑵曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值為3.

試題分析:⑴的普通方程為.       (4分)
⑵(方法一)經(jīng)過伸縮變換后,為參數(shù)),    (7分)
≤3,當(dāng)時(shí)取得“=”.
∴曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值為3.          (10分)
(方法二) 經(jīng)過伸縮變換后,,∴.   (7分)
,∴≤3.
當(dāng)且僅當(dāng)時(shí)取“=”.
∴曲線上任意一點(diǎn)到兩坐標(biāo)軸距離之積的最大值為3.                (10分)
點(diǎn)評:容易題,所涉及的公式要牢記,應(yīng)用基本不等式確定最值,體現(xiàn)解題的靈活性。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知圓的參數(shù)方程為為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,圓的極坐標(biāo)方程為
(Ⅰ)將圓的參數(shù)方程化為普通方程,將圓的極坐標(biāo)方程化為直角坐標(biāo)方程;
(Ⅱ)圓是否相交,若相交,請求出公共弦的長;若不相交,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

參數(shù)方程 (0≤t≤5)表示的曲線(形狀)是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知直線的參數(shù)方程為:(t為參數(shù)),曲線C的極坐標(biāo)方程為:
(1)求曲線C的普通方程;
(2)求直線被曲線C截得的弦長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本題滿分10分)選修4   -4 :坐標(biāo)系與參數(shù)方程
將圓上各點(diǎn)的縱坐標(biāo)壓縮至原來的,所得曲線記作C;將直線3x-2y-8=0
繞原點(diǎn)逆時(shí)針旋轉(zhuǎn)90°所得直線記作l
.(I)求直線l與曲線C的方程;
(II)求C上的點(diǎn)到直線l的最大距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

( 本小題滿分12分)如圖所示,已知圓為圓上一動點(diǎn),點(diǎn)上,點(diǎn)上,且滿足的軌跡為曲線。

求曲線的方程;
若過定點(diǎn)F(0,2)的直線交曲線于不同的兩點(diǎn)(點(diǎn)在點(diǎn)之間),且滿足,求的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分10分)選修4-4:坐標(biāo)系與參數(shù)方程
已知極坐標(biāo)系的極點(diǎn)與直角坐標(biāo)系的原點(diǎn)重合,極軸與直角坐標(biāo)系軸的正半軸重合.直線的參數(shù)方程是為參數(shù)),曲線的極坐標(biāo)方程為
(Ⅰ)求曲線的直角坐標(biāo)方程;(Ⅱ)設(shè)直線與曲線相交于兩點(diǎn),求兩點(diǎn)間的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

極坐標(biāo)系中,曲線相交于點(diǎn),則線段的長度為       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

直線上與點(diǎn)距離等于的點(diǎn)的坐標(biāo)是         

查看答案和解析>>

同步練習(xí)冊答案