已知△ABC中,,BC=2,,則AB邊長是( )
A.
B.
C.
D.
【答案】分析:根據(jù)余弦定理BC2=AB2+AC2-2×AB×AC×cosA將題中數(shù)據(jù)代入解方程即可得到答案.
解答:解:根據(jù)余弦定理可得BC2=AB2+AC2-2×AB×AC×cosA
,BC=2,,

∴AB=
故選D.
點評:本題主要考查余弦定理的應用.屬基礎(chǔ)題.
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

已知△ABC中A>B,給出下列不等式:
(1)sinA>sinB
(2)cosA<cosB
(3)sin2A>sin2B
(4)cos2A<cos2B
正確的有( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中A>B,給出下列不等式:
(1)sinA>sinB
(2)cosA<cosB
(3)sin2A>sin2B
(4)cos2A<cos2B
正確結(jié)論的序號為
(1)(2)(4)
(1)(2)(4)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,c-b=1,cosA=
12
13
,S△ABC=30,則a=( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,(b+a)(sinB-sinA)=asinB,又cos2C+cosC=1-cos(A-B).
(I)試判斷△ABC的形狀;
(II)求cosC的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知△ABC中,滿足B=60°,AB=3,AC=
7
,則BC=
 

查看答案和解析>>

同步練習冊答案