橢圓=1(a>b>0)的一個(gè)焦點(diǎn)F與拋物線y2=4x的焦點(diǎn)重合,且截拋物線的準(zhǔn)線所得弦長(zhǎng)為,傾斜角為45°的直線l過(guò)點(diǎn)F.
(1)求該橢圓的方程;
(2)設(shè)橢圓的另一個(gè)焦點(diǎn)為F1,問(wèn)拋物線y2=4x上是否存在一點(diǎn)M,使得M與F1關(guān)于直線l對(duì)稱(chēng),若存在,求出點(diǎn)M的坐標(biāo),若不存在,說(shuō)明理由.
(1)拋物線的焦點(diǎn)為,準(zhǔn)線方程為, ∴、 又橢圓截拋物線的準(zhǔn)線所得弦長(zhǎng)為, ∴得上交點(diǎn)為, ∴、凇 4分 由①代入②得,解得或(舍去), 從而 ∴該橢圓的方程為該橢圓的方程為 (2)∵傾斜角為的直線過(guò)點(diǎn), ∴直線的方程為,即, 由(1)知橢圓的另一個(gè)焦點(diǎn)為,設(shè)與關(guān)于直線對(duì)稱(chēng), 則得 10分 解得,即 又滿(mǎn)足,故點(diǎn)在拋物線上. 所以拋物線上存在一點(diǎn),使得與關(guān)于直線對(duì)稱(chēng). |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
P為橢圓=1(a>b>0)上一點(diǎn),F(xiàn)1為它的一個(gè)焦點(diǎn),求證:以PF1為直徑的圓與以長(zhǎng)軸為直徑的圓相切.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2014屆陜西省西安市高二上學(xué)期期末考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:選擇題
橢圓+=1(a>b>0)的離心率是,則的最小值為( )
A. B.1 C. D.2
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.
(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;
(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;
(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011年四川省成都市畢業(yè)班摸底測(cè)試(文科)數(shù)學(xué)卷 題型:填空題
經(jīng)過(guò)橢圓=1(a>b>0)的一個(gè)焦點(diǎn)和短軸端點(diǎn)的直線與原點(diǎn)的距離為,則該橢圓的離心率為
__________________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知點(diǎn)P(3,4)是橢圓+=1(a>b>0)上的一點(diǎn),F(xiàn)1、F2是橢圓的兩焦點(diǎn),若PF1⊥PF2,試求:
(1)橢圓方程;
(2)△PF1F2的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com