精英家教網 > 高中數學 > 題目詳情

【題目】為調查某地區(qū)老人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老年人,結果如下:

性別

是否需要志愿者

需要

40

30

不需要

160

270

1估計該地區(qū)老年人中,需要志愿者提供幫助的老年人的比例;

2請根據上面的數據分析該地區(qū)的老年人需要志愿者提供幫助與性別有關嗎

【答案】1;2有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關.

【解析】

試題分析:1由列聯表可知調查的500位老年人中有位需要志愿者提供幫助,兩個數據求比值得到該地區(qū)老年人中需要幫助的老年人的比例的估算值;2根據列聯表所給的數據,代入隨機變量的觀測值公式,得到觀測值的結果,把觀測值的結果與臨界值進行比較,看出有多大把握說該地區(qū)的老年人是否需要幫助與性別有關.

試題解析:

解:1調查的500位老年人中有70位需要志愿者提供幫助,因此該地區(qū)老年人中,需要幫助的老年人的比例的估算值為

2根據表中數據計算得:。

由于9.967>6.635,所以有99%的把握認為該地區(qū)的老年人是否需要幫助與性別有關。

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】一個不透明的袋子裝有4個完全相同的小球,球上分別標有數字為0,1,2,2,現甲從中摸出一個球后便放回,乙再從中摸出一個球,若摸出的球上數字大即獲勝(若數字相同則為平局),則在甲獲勝的條件下,乙摸1號球的概率為(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】解答
(1)設函數f(x)=|x﹣ |+|x﹣a|,x∈R,若關于x的不等式f(x)≥a在R上恒成立,求實數a的最大值;
(2)已知正數x,y,z滿足x+2y+3z=1,求 + + 的最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】設全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求實數a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知定義在上的函數滿足:對任意都有.

1)求證:函數是奇函數;

2)如果當時,有,試判斷上的單調性,并用定義證明你的判斷;

(3)在(2)的條件下,若對滿足不等式的任意恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△中,,,點邊上,且.

(1)若,求;

(2)若,求△的周長.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在△ABC中,角A,B,C的對邊分別為a、b、c,且滿足3asinC=4ccosA, =3.
(1)求△ABC的面積S;
(2)若c=1,求a的值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖所示,AC為⊙O的直徑,D為 的中點,E為BC的中點.

(1)求證:DE∥AB;
(2)求證:ACBC=2ADCD.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在直角坐標系中,曲線的參數方程為為參數);以原點為極點,軸正半軸為極軸建立極坐標系,曲線的極坐標方程為.

(Ⅰ)求曲線的普通方程與曲線的直角坐標方程;

(Ⅱ)若把曲線各點的橫坐標伸長到原來的倍,縱坐標變?yōu)樵瓉淼?/span>,得到曲線,求曲線的方程;

(Ⅲ)設為曲線上的動點,求點到曲線上點的距離的最小值,并求此時點的坐標.

查看答案和解析>>

同步練習冊答案